A systematic literature review on recent trends of machine learning applications in additive manufacturing
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Software
Link
https://link.springer.com/content/pdf/10.1007/s10845-022-01957-6.pdf
Reference172 articles.
1. Akhil, V., Raghav, G., Arunachalam, N., & Srinivas, D. S. (2020). Image data-based surface texture characterization and prediction using machine learning approaches for additive manufacturing. Journal of Computing and Information Science in Engineering, 20(2), 1–16. https://doi.org/10.1115/1.4045719
2. Alejandrino, J. D., Concepcion II, R. S., Lauguico, S. C., Tobias, R. R., Venancio, L., Macasaet, D., Bandala, A. A., & Dadios, E. P. (2020). A machine learning approach of lattice infill pattern for increasing material efficiency in additive manufacturing processes. International Journal of Mechanical Engineering and Robotics Research 9(9), 1253–1263. https://doi.org/10.18178/ijmerr.9.9.1253-1263
3. Aljarrah, O., Li, J., Huang, W., Heryudono, A., & Bi, J. (2020). ARIMA-GMDH: A low-order integrated approach for predicting and optimizing the additive manufacturing process parameters. International Journal of Advanced Manufacturing Technology, 106(1–2), 701–717. https://doi.org/10.1007/s00170-019-04315-8
4. Amini, M., Chang, S. I., & Rao, P. (2019). A cybermanufacturing and AI framework for laser powder bed fusion (LPBF) additive manufacturing process. Manufacturing Letters, 21, 41–44. https://doi.org/10.1016/j.mfglet.2019.08.007
5. Aminzadeh, M., & Kurfess, K. R. (2018). Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images. Journal of Intelligent Manufacturing, 30, 2505–2523. https://doi.org/10.1007/s10845-018-1412-0
Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Recent advances in machine learning-assisted fatigue life prediction of additive manufactured metallic materials: A review;Journal of Materials Science & Technology;2024-11
2. Deep learning of buckling instability in geometrically symmetry-breaking kirigami;International Journal of Mechanical Sciences;2024-10
3. Machine learning in polymer additive manufacturing: a review;International Journal of Material Forming;2024-09-06
4. Temperature evolution prediction for laser directed energy deposition enabled by finite element modelling and bi-directional gated recurrent unit;Advances in Manufacturing;2024-08-20
5. Automated optical inspection based on synthetic mechanisms combining deep learning and machine learning;Journal of Intelligent Manufacturing;2024-08-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3