EIF4A3-induced circular RNA SCAP facilitates tumorigenesis and progression of non-small-cell lung cancer via miR-7/SMAD2 signaling

Author:

Zhang Yingqing,Qi Weibo,Wu YongleiORCID

Abstract

AbstractThe eukaryotic translation initiation factor 4A (eIF4A) family determines transcription efficiency by directly binding to precursor RNAs. One member, EIF4A3, modulates the expression of circRNAs. Circular RNA SCAP (circSCAP), a newly found circRNA, has been implicated in atherosclerosis. Yet, how circSCAP regulates cancer development and progression remains understudied. Here, we investigated the function of circSCAP and the molecular mechanism in the tumorigenesis and progression of non-small-cell lung cancer (NSCLC). CircSCAP was upregulated in both NSCLC tissues and cell lines and was mainly located in the cytoplasm. CircSCAP expression was promoted by EIF4A3, which was associated with poor prognosis in patients with NSCLC. CircSCAP sponged miR-7 to upregulate small mothers against decapentaplegic 2 (SMAD2). CircSCAP knockdown undermined cell proliferation, migration, and invasion abilities in NSCLC cell lines (SPCA1 and A549), which was rescued by either inhibiting miR-7 or overexpressing SMAD2. Moreover, circSCAP knockdown upregulated E-cadherin, while downregulating N-cadherin, Vimentin, and MMP9 in SPCA1 and A549 cells, which were abolished by either inhibiting miR-7 or overexpressing SMAD2. Additionally, miR-7 was markedly downregulated, whereas SMAD2 was significantly upregulated in NSCLC tissues. MiR-7 expression was inversely correlated with circSCAP and SMAD2 expression in NSCLC tissues. In conclusion, this study demonstrates that circSCAP is significantly upregulated in NSCLC cell lines and tissues and elucidates that circSCAP facilitates NSCLC progression by sponging miR-7 and upregulating SMAD2. The study provides a novel molecular target for early diagnosis and treatment of NSCLC.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3