Arsenic uptake and accumulation in bean and lettuce plants at different developmental stages

Author:

Sandil Sirat,Záray Gyula,Endrédi Anett,Füzy Anna,Takács Tünde,Óvári Mihály,Dobosy Péter

Abstract

AbstractThe pattern of arsenic (As) uptake at different developmental stages in plants and its consequent influence on the growth of plants was investigated in bean and lettuce. Further, the human health risk from the consumption of these As-laced vegetables was determined. The irrigation water was contaminated with As at concentrations of 0.1, 0.25, and 0.5 mg/L. The As concentration in the plant parts (root, stem, leaves, and flower/fruit) was determined in bean at the young, flowering, and fruiting stages and lettuce at the young and mature stages. At the different growth stages, As had an impact on the biomass of bean and lettuce plant parts, but none of the biomass changes were significant (p>0.05). The increase in As concentration of the irrigation water elevated the As concentration of plant parts of both plants at all growth stages, with the exception of the bean fruit. The As concentration in the developmental stages was in the order: lettuce (young>mature) and bean (fruiting>young>flowering). In lettuce, the transfer factor was higher at the young stage (0.09–0.19, in the control and 0.1 mg/L As treatment), while in bean, it was highest at the flowering stage (0.09–0.41, in all treatments). In the edible part, lettuce possessed substantially elevated As concentrations (0.30, 0.61, and 1.21 mg/kg DW) compared to bean (0.008, 0.005, and 0.022 mg/kg DW) at As treatments of 0.1, 0.25, and 0.5 mg/L, respectively, and posed significant health risks at all applied As concentrations.

Funder

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

ELKH Centre for Ecological Research

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3