Intensification of the ultrafiltration of real oil-contaminated (produced) water with pre-ozonation and/or with TiO2, TiO2/CNT nanomaterial-coated membrane surfaces

Author:

Veréb GáborORCID,Kassai Péter,Nascimben Santos Erika,Arthanareeswaran Gangasalam,Hodúr Cecilia,László Zsuzsanna

Abstract

AbstractIn the present study, commercial PES, PVDF, PTFE ultrafilter membranes, and two different nanomaterial (TiO2 and TiO2/CNT composite)-covered PVDF ultrafilter membranes (MWCO = 100 kDa) were used for the purification of an industrial oil-contaminated (produced) wastewater, with and without ozone pretreatment to compare the achievable fouling mitigations by the mentioned surface modifications and/or pre-ozonation. Fluxes, filtration resistances, foulings, and purification efficiencies were compared in detail. Pre-ozonation was able to reduce the total filtration resistance in all cases (up to 50%), independently from the membrane material. During the application of nanomaterial-modified membranes were by far the lowest filtration resistances measured, and in these cases, pre-ozonation resulted in a slight further reduction (11–13%) of the total filtration resistance. The oil removal efficiency was 83–91% in the case of commercial membranes and > 98% in the case of modified membranes. Moreover, the highest fluxes (301–362 L m−2 h−1) were also measured in the case of modified membranes. Overall, the utilization of nanomaterial-modified membranes was more beneficial than pre-ozonation, but with the combination of these methods, slightly higher fluxes, lower filtration resistances, and better antifouling properties were achieved; however, pre-ozonation slightly decreased the oil removal efficiency.

Funder

Magyar Tudományos Akadémia

Emberi Eroforrások Minisztériuma

Hungarian Science and Research Foundation

The Hungarian State and the European Union

Ministry of Science and Technology of the Government of India

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3