1. Guala D, Zhang S, Cruz E, Riofrío CA, Klepsch J, Arrazola JM (2023) Practical overview of image classification with tensor-network quantum circuits. Sci Rep 13(1):4427
2. Bergholm V, Izaac J, Schuld M, Gogolin C, Ahmed S, Ajith V, Alam MS, Alonso-Linaje G, AkashNarayanan B, Asadi A, Arrazola JM, Azad U, Banning S, Blank C, Bromley TR, Cordier BA, Ceroni J, Delgado A, Matteo OD, Dusko A, Garg T, Guala D, Hayes A, Hill R, Ijaz A, Isacsson T, Ittah D, Jahangiri S, Jain P, Jiang E, Khandelwal A, Kottmann K, Lang RA, Lee C, Loke T, Lowe A, McKiernan K, Meyer JJ, Montañez-Barrera JA, Moyard R, Niu Z, O’Riordan LJ, Oud S, Panigrahi A, Park CY, Polatajko D, Quesada N, Roberts C, Sá N, Schoch I, Shi B, Shu S, Sim S, Singh A, Strandberg I, Soni J, Száva A, Thabet S, Vargas-Hernández RA, Vincent T, Vitucci N, Weber M, Wierichs D, Wiersema R, Willmann M, Wong V, Zhang S, Killoran N (2018) Pennylane: automatic differentiation of hybrid quantum-classical computations
3. Schuld M, Petruccione F (2021) Machine learning with quantum computers. In: Quantum Science and Technology. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-83098-4
4. Sprave J, Drescher C (2021) arXiv:2107.10507 [cs, math]
5. Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, Gambetta JM (2019) Supervised learning with quantum-enhanced feature spaces. Nature 567(7747):209. https://doi.org/10.1038/s41586-019-0980-2