Skip to main content

Advertisement

Log in

Targeting adenosine A2A receptors for early intervention of retinopathy of prematurity

  • Review
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Retinopathy of prematurity (ROP) continues to pose a significant threat to the vision of numerous children worldwide, primarily owing to the increased survival rates of premature infants. The pathologies of ROP are mainly linked to impaired vascularization as a result of hyperoxia, leading to subsequent neovascularization. Existing treatments, including anti-vascular endothelial growth factor (VEGF) therapies, have thus far been limited to addressing pathological angiogenesis at advanced ROP stages, inevitably leading to adverse side effects. Intervention to promote physiological angiogenesis during the initial stages could hold the potential to prevent ROP. Adenosine A2A receptors (A2AR) have been identified in various ocular cell types, exhibiting distinct densities and functionally intricate connections with oxygen metabolism. In this review, we discuss experimental evidence that strongly underscores the pivotal role of A2AR in ROP. In particular, A2AR blockade may represent an effective treatment strategy, mitigating retinal vascular loss by reversing hyperoxia-mediated cellular proliferation inhibition and curtailing hypoxia-mediated neovascularization in oxygen-induced retinopathy (OIR). These effects stem from the interplay of endothelium, neuronal and glial cells, and novel molecular pathways (notably promoting TGF-β signaling) at the hyperoxia phase. We propose that pharmacological targeting of A2AR signaling may confer an early intervention for ROP with distinct therapeutic benefits and mechanisms than the anti-VEGF therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blencowe H, Lawn JE, Vazquez T, Fielder A, Gilbert C (2013) Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010. Pediatr Res. 74(Suppl 1):35–49. https://doi.org/10.1038/pr.2013.205

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hartnett ME, Penn JS (2012) Mechanisms and management of retinopathy of prematurity. N Engl J Med 367(26):2515–2526. https://doi.org/10.1056/NEJMra1208129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Terry TL (1944) Retrolental fibroplasia in the premature infant: V. Further studies on fibroplastic overgrowth of the persistent tunica vasculosa lentis. Trans Am Ophthalmol Soc 42:383–396

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen J, Smith LE (2007) Retinopathy of prematurity. Angiogenesis 10(2):133–140. https://doi.org/10.1007/s10456-007-9066-0

    Article  PubMed  Google Scholar 

  5. Hellström A, Smith LE, Dammann O (2013) Retinopathy of prematurity. Lancet 382(9902):1445–1457. https://doi.org/10.1016/s0140-6736(13)60178-6

    Article  PubMed  PubMed Central  Google Scholar 

  6. Palmer EA, Flynn JT, Hardy RJ, Phelps DL, Phillips CL, Schaffer DB et al (2020) Incidence and early course of retinopathy of prematurity. Ophthalmology 127(4s):S84-s96. https://doi.org/10.1016/j.ophtha.2020.01.034

    Article  PubMed  Google Scholar 

  7. Chiang MF, Quinn GE, Fielder AR, Ostmo SR, Paul Chan RV, Berrocal A et al (2021) International Classification of Retinopathy of Prematurity Third Edition. Ophthalmology 128(10):e51–e68. https://doi.org/10.1016/j.ophtha.2021.05.031

    Article  PubMed  Google Scholar 

  8. Nilsson M, Hellström A, Jacobson L (2016) Retinal sequelae in adults treated with cryotherapy for retinopathy of prematurity. Invest Ophthalmol Vis Sci 57(9):Oct550-5. https://doi.org/10.1167/iovs.15-18583

    Article  PubMed  Google Scholar 

  9. Tsai AS, Chou HD, Ling XC, Al-Khaled T, Valikodath N, Cole E et al (2021) Assessment and management of retinopathy of prematurity in the era of anti-vascular endothelial growth factor (VEGF). Prog Retin Eye Res 101018. https://doi.org/10.1016/j.preteyeres.2021.101018

  10. Natarajan G, Shankaran S, Nolen TL, Sridhar A, Kennedy KA, Hintz SR et al (2019) Neurodevelopmental outcomes of preterm infants with retinopathy of prematurity by treatment. Pediatrics 144(2). https://doi.org/10.1542/peds.2018-3537

  11. Morin J, Luu TM, Superstein R, Ospina LH, Lefebvre F, Simard MN et al (2016) Neurodevelopmental outcomes following bevacizumab injections for retinopathy of prematurity. Pediatrics 137(4). https://doi.org/10.1542/peds.2015-3218

  12. Selvam S, Kumar T, Fruttiger M (2018) Retinal vasculature development in health and disease. Prog Retin Eye Res 63:1–19. https://doi.org/10.1016/j.preteyeres.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  13. Lawrence J, Xiao D, Xue Q, Rejali M, Yang S, Zhang L (2008) Prenatal nicotine exposure increases heart susceptibility to ischemia/reperfusion injury in adult offspring. J Pharmacol Exp Ther 324(1):331–341. https://doi.org/10.1124/jpet.107.132175

    Article  CAS  PubMed  Google Scholar 

  14. Webster WS, Abela D (2007) The effect of hypoxia in development. Birth Defects Res C Embryo Today 81(3):215–228. https://doi.org/10.1002/bdrc.20102

    Article  CAS  PubMed  Google Scholar 

  15. Castillo A, Sola A, Baquero H, Neira F, Alvis R, Deulofeut R et al (2008) Pulse oxygen saturation levels and arterial oxygen tension values in newborns receiving oxygen therapy in the neonatal intensive care unit: is 85% to 93% an acceptable range? Pediatrics 121(5):882–889. https://doi.org/10.1542/peds.2007-0117

    Article  PubMed  Google Scholar 

  16. Askie LM, Henderson-Smart DJ, Irwig L, Simpson JM (2003) Oxygen-saturation targets and outcomes in extremely preterm infants. N Engl J Med 349(10):959–967. https://doi.org/10.1056/NEJMoa023080

    Article  CAS  PubMed  Google Scholar 

  17. Chan-Ling T, Gole GA, Quinn GE, Adamson SJ, Darlow BA (2018) Pathophysiology, screening and treatment of ROP: a multi-disciplinary perspective. Prog Retin Eye Res 62:77–119. https://doi.org/10.1016/j.preteyeres.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  18. Penn JS, Madan A, Caldwell RB, Bartoli M, Caldwell RW, Hartnett ME (2008) Vascular endothelial growth factor in eye disease. Prog Retin Eye Res 27(4):331–371. https://doi.org/10.1016/j.preteyeres.2008.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Apte RS, Chen DS, Ferrara N (2019) VEGF in signaling and disease: beyond discovery and development. Cell 176(6):1248–1264. https://doi.org/10.1016/j.cell.2019.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu CH, Wang Z, Sun Y, Chen J (2017) Animal models of ocular angiogenesis: from development to pathologies. Faseb J 31(11):4665–4681. https://doi.org/10.1096/fj.201700336R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smith LE, Wesolowski E, McLellan A, Kostyk SK, D’Amato R, Sullivan R et al (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35(1):101–111

    CAS  PubMed  Google Scholar 

  22. Connor KM, Krah NM, Dennison RJ, Aderman CM, Chen J, Guerin KI et al (2009) Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat Protoc 4(11):1565–1573. https://doi.org/10.1038/nprot.2009.187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sapieha P, Joyal JS, Rivera JC, Kermorvant-Duchemin E, Sennlaub F, Hardy P et al (2010) Retinopathy of prematurity: understanding ischemic retinal vasculopathies at an extreme of life. J Clin Investig 120(9):3022–3032. https://doi.org/10.1172/jci42142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets–what are the challenges? Nat Rev Drug Discov 12(4):265–286. https://doi.org/10.1038/nrd3955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Parkinson FE, Damaraju VL, Graham K, Yao SY, Baldwin SA, Cass CE et al (2011) Molecular biology of nucleoside transporters and their distributions and functions in the brain. Curr Top Med Chem 11(8):948–972. https://doi.org/10.2174/156802611795347582

    Article  CAS  PubMed  Google Scholar 

  26. Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K (2018) Pharmacology of adenosine receptors: the state of the art. Physiol Rev 98(3):1591–1625. https://doi.org/10.1152/physrev.00049.2017

    Article  CAS  PubMed  Google Scholar 

  27. Lutty GA, McLeod DS (2003) Retinal vascular development and oxygen-induced retinopathy: a role for adenosine. Prog Retin Eye Res 22(1):95–111. https://doi.org/10.1016/s1350-9462(02)00058-7

    Article  CAS  PubMed  Google Scholar 

  28. Xu Y, Wang Y, Yan S, Yang Q, Zhou Y, Zeng X et al (2017) Regulation of endothelial intracellular adenosine via adenosine kinase epigenetically modulates vascular inflammation. Nat Commun 8(1):943. https://doi.org/10.1038/s41467-017-00986-7

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Xu Y, Wang Y, Yan S, Zhou Y, Yang Q, Pan Y et al (2017) Intracellular adenosine regulates epigenetic programming in endothelial cells to promote angiogenesis. EMBO Mol Med 9(9):1263–78. https://doi.org/10.15252/emmm.201607066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lutty GA, Merges C, McLeod DS (2000) 5’ nucleotidase and adenosine during retinal vasculogenesis and oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 41(1):218–229

    CAS  PubMed  Google Scholar 

  31. Taomoto M, McLeod DS, Merges C, Lutty GA (2000) Localization of adenosine A2a receptor in retinal development and oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 41(1):230–243

    CAS  PubMed  Google Scholar 

  32. Zhang S, Li B, Tang L, Tong M, Jiang N, Gu X et al (2022) Disruption of CD73-derived and equilibrative nucleoside transporter 1-mediated adenosine signaling exacerbates oxygen-induced retinopathy. Am J Pathol. https://doi.org/10.1016/j.ajpath.2022.07.014

    Article  PubMed  PubMed Central  Google Scholar 

  33. Parkinson FE, Zhang YW, Shepel PN, Greenway SC, Peeling J, Geiger JD (2000) Effects of nitrobenzylthioinosine on neuronal injury, adenosine levels, and adenosine receptor activity in rat forebrain ischemia. J Neurochem 75(2):795–802. https://doi.org/10.1046/j.1471-4159.2000.0750795.x

    Article  CAS  PubMed  Google Scholar 

  34. Chen JF, Zhang S, Zhou R, Lin Z, Cai X, Lin J et al (2017) Adenosine receptors and caffeine in retinopathy of prematurity. Mol Aspects Med 55:118–125. https://doi.org/10.1016/j.mam.2017.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang S, Li H, Li B, Zhong D, Gu X, Tang L et al (2015) Adenosine A1 receptors selectively modulate oxygen-induced retinopathy at the hyperoxic and hypoxic phases by distinct cellular mechanisms. Invest Ophthalmol Vis Sci 56(13):8108–8119. https://doi.org/10.1167/iovs.15-17202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu XL, Zhou R, Pan QQ, Jia XL, Gao WN, Wu J et al (2010) Genetic inactivation of the adenosine A2A receptor attenuates pathologic but not developmental angiogenesis in the mouse retina. Invest Ophthalmol Vis Sci 51(12):6625–6632. https://doi.org/10.1167/iovs.09-4900

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhou R, Zhang S, Gu X, Ge Y, Zhong D, Zhou Y et al (2018) Adenosine A(2A) receptor antagonists act at the hyperoxic phase to confer protection against retinopathy. Mol Med (Cambridge, Mass) 24(1):41. https://doi.org/10.1186/s10020-018-0038-1

    Article  CAS  Google Scholar 

  38. Aranda JV, Cai CL, Ahmad T, Bronshtein V, Sadeh J, Valencia GB et al (2016) Pharmacologic synergism of ocular ketorolac and systemic caffeine citrate in rat oxygen-induced retinopathy. Pediatr Res 80(4):554–565. https://doi.org/10.1038/pr.2016.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang S, Zhou R, Li B, Li H, Wang Y, Gu X et al (2017) Caffeine preferentially protects against oxygen-induced retinopathy. Faseb J 31(8):3334–3348. https://doi.org/10.1096/fj.201601285R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Afzal A, Shaw LC, Caballero S, Spoerri PE, Lewin AS, Zeng D et al (2003) Reduction in preretinal neovascularization by ribozymes that cleave the A2B adenosine receptor mRNA. Circ Res 93(6):500–506. https://doi.org/10.1161/01.Res.0000091260.78959.Bc

    Article  CAS  PubMed  Google Scholar 

  41. Orru M, Bakešová J, Brugarolas M, Quiroz C, Beaumont V, Goldberg SR et al (2011) Striatal pre- and postsynaptic profile of adenosine A(2A) receptor antagonists. PLoS ONE 6(1):e16088. https://doi.org/10.1371/journal.pone.0016088

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Orrú M, Quiroz C, Guitart X, Ferré S (2011) Pharmacological evidence for different populations of postsynaptic adenosine A2A receptors in the rat striatum. Neuropharmacology 61(5–6):967–974. https://doi.org/10.1016/j.neuropharm.2011.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Charles BA, Conley YP, Chen G, Miller RG, Dorman JS, Gorin MB et al (2011) Variants of the adenosine A(2A) receptor gene are protective against proliferative diabetic retinopathy in patients with type 1 diabetes. Ophthalmic Res 46(1):1–8. https://doi.org/10.1159/000317057

    Article  CAS  PubMed  Google Scholar 

  44. He X, Qiu JC, Lu KY, Guo HL, Li L, Jia WW et al (2021) Therapy for apnoea of prematurity: a retrospective study on effects of standard dose and genetic variability on clinical response to caffeine citrate in Chinese preterm infants. Adv Ther 38(1):607–626. https://doi.org/10.1007/s12325-020-01544-2

    Article  CAS  PubMed  Google Scholar 

  45. Housley GD, Bringmann A, Reichenbach A (2009) Purinergic signaling in special senses. Trends Neurosci 32(3):128–141. https://doi.org/10.1016/j.tins.2009.01.001

    Article  CAS  PubMed  Google Scholar 

  46. Friedman Z, Hackett SF, Linden J, Campochiaro PA (1989) Human retinal pigment epithelial cells in culture possess A2-adenosine receptors. Brain Res 492(1–2):29–35. https://doi.org/10.1016/0006-8993(89)90885-8

    Article  CAS  PubMed  Google Scholar 

  47. Blazynski C (1990) Discrete distributions of adenosine receptors in mammalian retina. J Neurochem 54(2):648–655. https://doi.org/10.1111/j.1471-4159.1990.tb01920.x

    Article  CAS  PubMed  Google Scholar 

  48. Newman EA (2005) Calcium increases in retinal glial cells evoked by light-induced neuronal activity. J Neurosci 25(23):5502–5510. https://doi.org/10.1523/jneurosci.1354-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li H, Zhang Z, Blackburn MR, Wang SW, Ribelayga CP, O’Brien J (2013) Adenosine and dopamine receptors coregulate photoreceptor coupling via gap junction phosphorylation in mouse retina. J Neurosci 33(7):3135–3150. https://doi.org/10.1523/jneurosci.2807-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li Q, Puro DG (2001) Adenosine activates ATP-sensitive K(+) currents in pericytes of rat retinal microvessels: role of A1 and A2a receptors. Brain Res 907(1–2):93–99. https://doi.org/10.1016/s0006-8993(01)02607-5

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Liou GI, Auchampach JA, Hillard CJ, Zhu G, Yousufzai B, Mian S et al (2008) Mediation of cannabidiol anti-inflammation in the retina by equilibrative nucleoside transporter and A2A adenosine receptor. Invest Ophthalmol Vis Sci 49(12):5526–5531. https://doi.org/10.1167/iovs.08-2196

    Article  PubMed  Google Scholar 

  52. Aires ID, Boia R, Rodrigues-Neves AC, Madeira MH, Marques C, Ambrósio AF et al (2019) Blockade of microglial adenosine A(2A) receptor suppresses elevated pressure-induced inflammation, oxidative stress, and cell death in retinal cells. Glia 67(5):896–914. https://doi.org/10.1002/glia.23579

    Article  PubMed  PubMed Central  Google Scholar 

  53. Boison D, Chen JF, Fredholm BB (2010) Adenosine signaling and function in glial cells. Cell Death Differ 17(7):1071–1082. https://doi.org/10.1038/cdd.2009.131

    Article  CAS  PubMed  Google Scholar 

  54. Zhong DJ, Zhang Y, Zhang S, Ge YY, Tong M, Feng Y et al (2021) Adenosine A(2A) receptor antagonism protects against hyperoxia-induced retinal vascular loss via cellular proliferation. Faseb J 35(9):e21842. https://doi.org/10.1096/fj.202100414RR

    Article  CAS  PubMed  Google Scholar 

  55. Goebel CP, Song YS, Zaitoun IS, Wang S, Potter HAD, Sorenson CM et al (2023) Adenosine receptors expression in human retina and choroid with age-related macular degeneration. J Ophthalmic Vis Res 18(1):51–9. https://doi.org/10.18502/jovr.v18i1.12725

    Article  PubMed  PubMed Central  Google Scholar 

  56. Liu Z, Yan S, Wang J, Xu Y, Wang Y, Zhang S et al (2017) Endothelial adenosine A2a receptor-mediated glycolysis is essential for pathological retinal angiogenesis. Nat Commun 8(1):584. https://doi.org/10.1038/s41467-017-00551-2

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  57. Cao J, Ribelayga CP, Mangel SC (2020) A circadian clock in the retina regulates rod-cone gap junction coupling and neuronal light responses via activation of adenosine A(2A) receptors. Front Cell Neurosci 14:605067. https://doi.org/10.3389/fncel.2020.605067

    Article  CAS  PubMed  Google Scholar 

  58. Huang PC, Hsiao YT, Kao SY, Chen CF, Chen YC, Chiang CW et al (2014) Adenosine A(2A) receptor up-regulates retinal wave frequency via starburst amacrine cells in the developing rat retina. PLoS ONE 9(4):e95090. https://doi.org/10.1371/journal.pone.0095090

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  59. Gao S, Li N, Wang Y, Zhong Y, Shen X (2020) Blockade of adenosine A(2A) receptor protects photoreceptors after retinal detachment by inhibiting inflammation and oxidative stress. Oxid Med Cell Longev 2020:7649080. https://doi.org/10.1155/2020/7649080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Aires ID, Madeira MH, Boia R, Rodrigues-Neves AC, Martins JM, Ambrósio AF et al (2019) Intravitreal injection of adenosine A(2A) receptor antagonist reduces neuroinflammation, vascular leakage and cell death in the retina of diabetic mice. Sci Rep 9(1):17207. https://doi.org/10.1038/s41598-019-53627-y

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  61. Madeira MH, Rashid K, Ambrósio AF, Santiago AR, Langmann T (2018) Blockade of microglial adenosine A2A receptor impacts inflammatory mechanisms, reduces ARPE-19 cell dysfunction and prevents photoreceptor loss in vitro. Sci Rep 8(1):2272. https://doi.org/10.1038/s41598-018-20733-2

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  62. Madeira MH, Boia R, Elvas F, Martins T, Cunha RA, Ambrósio AF et al (2016) Selective A2A receptor antagonist prevents microglia-mediated neuroinflammation and protects retinal ganglion cells from high intraocular pressure-induced transient ischemic injury. Transl Res 169:112–128. https://doi.org/10.1016/j.trsl.2015.11.005

    Article  CAS  PubMed  Google Scholar 

  63. Boia R, Elvas F, Madeira MH, Aires ID, Rodrigues-Neves AC, Tralhão P et al (2017) Treatment with A(2A) receptor antagonist KW6002 and caffeine intake regulate microglia reactivity and protect retina against transient ischemic damage. Cell Death Dis 8(10):e3065. https://doi.org/10.1038/cddis.2017.451

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shaikh G, Cronstein B (2016) Signaling pathways involving adenosine A2A and A2B receptors in wound healing and fibrosis. Purinergic Signal 12(2):191–197. https://doi.org/10.1007/s11302-016-9498-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ahmad A, Ahmad S, Glover L, Miller SM, Shannon JM, Guo X et al (2009) Adenosine A2A receptor is a unique angiogenic target of HIF-2alpha in pulmonary endothelial cells. Proc Natl Acad Sci U S A 106(26):10684–10689. https://doi.org/10.1073/pnas.0901326106

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  66. Sitkovsky MV, Hatfield S, Abbott R, Belikoff B, Lukashev D, Ohta A (2014) Hostile, hypoxia-A2-adenosinergic tumor biology as the next barrier to overcome for tumor immunologists. Cancer Immunol Res 2(7):598–605. https://doi.org/10.1158/2326-6066.Cir-14-0075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li X, Sun X, Carmeliet P (2019) Hallmarks of endothelial cell metabolism in health and disease. Cell Metab 30(3):414–433. https://doi.org/10.1016/j.cmet.2019.08.011

    Article  CAS  PubMed  Google Scholar 

  68. De Bock K, Georgiadou M, Carmeliet P (2013) Role of endothelial cell metabolism in vessel sprouting. Cell Metab 18(5):634–647. https://doi.org/10.1016/j.cmet.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  69. Takagi H, King GL, Robinson GS, Ferrara N, Aiello LP (1996) Adenosine mediates hypoxic induction of vascular endothelial growth factor in retinal pericytes and endothelial cells. Invest Ophthalmol Vis Sci 37(11):2165–2176

    CAS  PubMed  Google Scholar 

  70. Acurio J, Herlitz K, Troncoso F, Aguayo C, Bertoglia P, Escudero C (2017) Adenosine A(2A) receptor regulates expression of vascular endothelial growth factor in feto-placental endothelium from normal and late-onset pre-eclamptic pregnancies. Purinergic Signal 13(1):51–60. https://doi.org/10.1007/s11302-016-9538-z

    Article  CAS  PubMed  Google Scholar 

  71. Leibovich SJ, Chen JF, Pinhal-Enfield G, Belem PC, Elson G, Rosania A et al (2002) Synergistic up-regulation of vascular endothelial growth factor expression in murine macrophages by adenosine A(2A) receptor agonists and endotoxin. Am J Pathol 160(6):2231–2244. https://doi.org/10.1016/s0002-9440(10)61170-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676. https://doi.org/10.1038/nm0603-669

    Article  CAS  PubMed  Google Scholar 

  73. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371. https://doi.org/10.1038/nrm1911

    Article  CAS  PubMed  Google Scholar 

  74. Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S et al (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130(4):691–703. https://doi.org/10.1016/j.cell.2007.06.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pitulescu ME, Schmidt I, Giaimo BD, Antoine T, Berkenfeld F, Ferrante F et al (2017) Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol 19(8):915–927. https://doi.org/10.1038/ncb3555

    Article  CAS  PubMed  Google Scholar 

  76. Bruzzese L, Rostain JC, Née L, Condo J, Mottola G, Adjriou N et al (1985) (2015) Effect of hyperoxic and hyperbaric conditions on the adenosinergic pathway and CD26 expression in rat. J Appl Physiol 119(2):140–147. https://doi.org/10.1152/japplphysiol.00223.2015

    Article  CAS  Google Scholar 

  77. Patel C, Xu Z, Shosha E, Xing J, Lucas R, Caldwell RW et al (1862) (2016) Treatment with polyamine oxidase inhibitor reduces microglial activation and limits vascular injury in ischemic retinopathy. Biochim Biophys Acta 9:1628–1639. https://doi.org/10.1016/j.bbadis.2016.05.020

    Article  CAS  Google Scholar 

  78. Gu X, El-Remessy AB, Brooks SE, Al-Shabrawey M, Tsai NT, Caldwell RB (2003) Hyperoxia induces retinal vascular endothelial cell apoptosis through formation of peroxynitrite. Am J Physiol Cell Physiol 285(3):C546–C554. https://doi.org/10.1152/ajpcell.00424.2002

    Article  CAS  PubMed  Google Scholar 

  79. Grant ZL, Whitehead L, Wong VH, He Z, Yan RY, Miles AR et al (2020) Blocking endothelial apoptosis revascularizes the retina in a model of ischemic retinopathy. J Clin Investig 130(8):4235–4251. https://doi.org/10.1172/jci127668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Uno K, Merges CA, Grebe R, Lutty GA, Prow TW (2007) Hyperoxia inhibits several critical aspects of vascular development. Dev Dyn 236(4):981–990. https://doi.org/10.1002/dvdy.21122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Montesinos MC, Desai A, Chen JF, Yee H, Schwarzschild MA, Fink JS et al (2002) Adenosine promotes wound healing and mediates angiogenesis in response to tissue injury via occupancy of A(2A) receptors. Am J Pathol 160(6):2009–2018. https://doi.org/10.1016/s0002-9440(10)61151-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL et al (2014) The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 157(3):565–579. https://doi.org/10.1016/j.cell.2014.03.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Perelli RM, O’Sullivan ML, Zarnick S, Kay JN (2021) Environmental oxygen regulates astrocyte proliferation to guide angiogenesis during retinal development. Development 148(9). https://doi.org/10.1242/dev.199418

  84. Di Marco B, Crouch EE, Shah B, Duman C, Paredes MF, Ruiz de Almodovar C et al (2020) Reciprocal interaction between vascular filopodia and neural stem cells shapes neurogenesis in the ventral telencephalon. Cell Rep 33(2):108256. https://doi.org/10.1016/j.celrep.2020.108256

    Article  CAS  PubMed  Google Scholar 

  85. Dong X, Zhang Q, Yu X, Wang D, Ma J, Ma J et al (2022) Metabolic lactate production coordinates vasculature development and progenitor behavior in the developing mouse neocortex. Nat Neurosci 25(7):865–875. https://doi.org/10.1038/s41593-022-01093-7

    Article  CAS  PubMed  Google Scholar 

  86. Hashimoto T, Zhang XM, Chen BY, Yang XJ (2006) VEGF activates divergent intracellular signaling components to regulate retinal progenitor cell proliferation and neuronal differentiation. Development 133(11):2201–2210. https://doi.org/10.1242/dev.02385

    Article  CAS  PubMed  Google Scholar 

  87. Sears JE, Hoppe G, Ebrahem Q, Anand-Apte B (2008) Prolyl hydroxylase inhibition during hyperoxia prevents oxygen-induced retinopathy. Proc Natl Acad Sci U S A 105(50):19898–19903. https://doi.org/10.1073/pnas.0805817105

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  88. Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1(10):1024–1028. https://doi.org/10.1038/nm1095-1024

    Article  CAS  PubMed  Google Scholar 

  89. Trichonas G, Lee TJ, Hoppe G, Au J, Sears JE (2013) Prolyl hydroxylase inhibition during hyperoxia prevents oxygen-induced retinopathy in the rat 50/10 model. Invest Ophthalmol Vis Sci 54(7):4919–4926. https://doi.org/10.1167/iovs.13-12171

    Article  CAS  PubMed  Google Scholar 

  90. Wang H, Byfield G, Jiang Y, Smith GW, McCloskey M, Hartnett ME (2012) VEGF-mediated STAT3 activation inhibits retinal vascularization by down-regulating local erythropoietin expression. Am J Pathol 180(3):1243–1253. https://doi.org/10.1016/j.ajpath.2011.11.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ley D, Hallberg B, Hansen-Pupp I, Dani C, Ramenghi LA, Marlow N et al (2019) rhIGF-1/rhIGFBP-3 in preterm infants: a phase 2 randomized controlled trial. J Pediatr 206:56-65.e8. https://doi.org/10.1016/j.jpeds.2018.10.033

    Article  CAS  PubMed  Google Scholar 

  92. Fu Z, Nilsson AK, Hellstrom A, Smith LEH (2022) Retinopathy of prematurity: metabolic risk factors. Elife 11. https://doi.org/10.7554/eLife.80550

  93. Najm S, Löfqvist C, Hellgren G, Engström E, Lundgren P, Hård AL et al (2017) Effects of a lipid emulsion containing fish oil on polyunsaturated fatty acid profiles, growth and morbidities in extremely premature infants: a randomized controlled trial. Clin Nutr ESPEN 20:17–23. https://doi.org/10.1016/j.clnesp.2017.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hellström A, Nilsson AK, Wackernagel D, Pivodic A, Vanpee M, Sjöbom U et al (2021) Effect of enteral lipid supplement on severe retinopathy of prematurity: a randomized clinical trial. JAMA Pediatr 175(4):359–367. https://doi.org/10.1001/jamapediatrics.2020.5653

    Article  PubMed  Google Scholar 

  95. Hartnett ME (2015) Pathophysiology and mechanisms of severe retinopathy of prematurity. Ophthalmology 122(1):200–210. https://doi.org/10.1016/j.ophtha.2014.07.050

    Article  PubMed  Google Scholar 

  96. Wu WC, Lien R, Liao PJ, Wang NK, Chen YP, Chao AN et al (2015) Serum levels of vascular endothelial growth factor and related factors after intravitreous bevacizumab injection for retinopathy of prematurity. JAMA Ophthalmol 133(4):391–397. https://doi.org/10.1001/jamaophthalmol.2014.5373

    Article  PubMed  Google Scholar 

  97. Hartnett ME, Wallace DK, Dean TW, Li Z, Boente CS, Dosunmu EO et al (2022) Plasma levels of bevacizumab and vascular endothelial growth factor after low-dose bevacizumab treatment for retinopathy of prematurity in infantS. JAMA Ophthalmol 140(4):337–344. https://doi.org/10.1001/jamaophthalmol.2022.0030

    Article  PubMed  PubMed Central  Google Scholar 

  98. Scheuer T, Sharkovska Y, Tarabykin V, Marggraf K, Brockmöller V, Bührer C et al (2018) Neonatal hyperoxia perturbs neuronal development in the cerebellum. Mol Neurobiol 55(5):3901–3915. https://doi.org/10.1007/s12035-017-0612-5

    Article  CAS  PubMed  Google Scholar 

  99. Scheuer T, dem Brinke EA, Grosser S, Wolf SA, Mattei D, Sharkovska Y et al (2021) Reduction of cortical parvalbumin-expressing GABAergic interneurons in a rodent hyperoxia model of preterm birth brain injury with deficits in social behavior and cognition. Development 148(20). https://doi.org/10.1242/dev.198390

  100. Lithopoulos MA, Toussay X, Zhong S, Xu L, Mustafa SB, Ouellette J et al (2022) Neonatal hyperoxia in mice triggers long-term cognitive deficits via impairments in cerebrovascular function and neurogenesis. J Clin Investig 132(22). https://doi.org/10.1172/jci146095

  101. London A, Benhar I, Schwartz M (2013) The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol 9(1):44–53. https://doi.org/10.1038/nrneurol.2012.227

    Article  CAS  PubMed  Google Scholar 

  102. Hou C, Norcia AM, Madan A, Tith S, Agarwal R, Good WV (2011) Visual cortical function in very low birth weight infants without retinal or cerebral pathology. Invest Ophthalmol Vis Sci 52(12):9091–9098. https://doi.org/10.1167/iovs.11-7458

    Article  PubMed  PubMed Central  Google Scholar 

  103. Molnar AEC, Andréasson SO, Larsson EKB, Åkerblom HM, Holmström GE (2017) Reduction of rod and cone function in 6.5-year-old children born extremely preterm. JAMA Ophthalmol 135(8):854–61. https://doi.org/10.1001/jamaophthalmol.2017.2069

    Article  PubMed  PubMed Central  Google Scholar 

  104. Fieß A, Janz J, Schuster AK, Kölb-Keerl R, Knuf M, Kirchhof B et al (2017) Macular morphology in former preterm and full-term infants aged 4 to 10 years. Graefes Arch Clin Exp Ophthalmol 255(7):1433–1442. https://doi.org/10.1007/s00417-017-3662-5

    Article  CAS  PubMed  Google Scholar 

  105. Ingvaldsen SH, Morken TS, Austeng D, Dammann O (2022) Visuopathy of prematurity: is retinopathy just the tip of the iceberg? Pediatr Res 91(5):1043–1048. https://doi.org/10.1038/s41390-021-01625-0

    Article  PubMed  Google Scholar 

  106. Zhou Y, Zeng X, Li G, Yang Q, Xu J, Zhang M et al (2019) Inactivation of endothelial adenosine A(2A) receptors protects mice from cerebral ischaemia-induced brain injury. Br J Pharmacol 176(13):2250–2263. https://doi.org/10.1111/bph.14673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen JF, Xu K, Petzer JP, Staal R, Xu YH, Beilstein M et al (2001) Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 21(10):RC143. https://doi.org/10.1523/JNEUROSCI.21-10-j0001.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Canas PM, Porciúncula LO, Cunha GM, Silva CG, Machado NJ, Oliveira JM et al (2009) Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci 29(47):14741–14751. https://doi.org/10.1523/jneurosci.3728-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ma ZL, Wang G, Cheng X, Chuai M, Kurihara H, Lee KK et al (2014) Excess caffeine exposure impairs eye development during chick embryogenesis. J Cell Mol Med 18(6):1134–1143. https://doi.org/10.1111/jcmm.12260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Favrais G, Tourneux P, Lopez E, Durrmeyer X, Gascoin G, Ramful D et al (2014) Impact of common treatments given in the perinatal period on the developing brain. Neonatology 106(3):163–172. https://doi.org/10.1159/000363492

    Article  CAS  PubMed  Google Scholar 

  111. Silva CG, Métin C, Fazeli W, Machado NJ, Darmopil S, Launay PS et al (2013) Adenosine receptor antagonists including caffeine alter fetal brain development in mice. Sci Transl Med 5(197):197ra04. https://doi.org/10.1126/scitranslmed.3006258

    Article  CAS  Google Scholar 

  112. Tavares Gomes AL, Maia FB, Oliveira-Silva P, Marques Ventura AL, Paes-De-Carvalho R, Serfaty CA et al (2009) Purinergic modulation in the development of the rat uncrossed retinotectal pathway. Neuroscience 163(4):1061–1068. https://doi.org/10.1016/j.neuroscience.2009.07.029

    Article  CAS  PubMed  Google Scholar 

  113. Tavares-Gomes AL, Teixeira-Silva B, Thomasi BBM, Trindade P, Espírito-Santo S, Faria-Melibeu ADC et al (2023) Retinotectal plasticity induced by monocular enucleation during the critical period is dependent of A2a adenosine receptor: a possible role of astrocytes. Exp Neurol 365:114427. https://doi.org/10.1016/j.expneurol.2023.114427

    Article  CAS  PubMed  Google Scholar 

  114. Gomez-Castro F, Zappettini S, Pressey JC, Silva CG, Russeau M, Gervasi N et al (2021) Convergence of adenosine and GABA signaling for synapse stabilization during development. Science. 374(6568):eabk2055. https://doi.org/10.1126/science.abk2055

    Article  CAS  PubMed  Google Scholar 

  115. Miao Y, Chen X, You F, Jia M, Li T, Tang P et al (2021) Adenosine A(2A) receptor modulates microglia-mediated synaptic pruning of the retinogeniculate pathway during postnatal development. Neuropharmacology 200:108806. https://doi.org/10.1016/j.neuropharm.2021.108806

    Article  CAS  PubMed  Google Scholar 

  116. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A et al (2007) Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med 357(19):1893–1902. https://doi.org/10.1056/NEJMoa073679

    Article  CAS  PubMed  Google Scholar 

  117. Chen JF, Cunha RA (2020) The belated US FDA approval of the adenosine A(2A) receptor antagonist istradefylline for treatment of Parkinson’s disease. Purinergic Signal 16(2):167–174. https://doi.org/10.1007/s11302-020-09694-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Sijia Ling for her excellent schematic illustration in this review. We also thank Dr. Xiaoxin Chen (University of Waterloo, Canada) for editing and proofreading the manuscript.

Funding

This study was funded by the National Natural Science Foundation of China (Grant #82151308 to J.-F.C.; 82101556 to X.Z.), the Research Fund for International Senior Scientists (Grant #82150710558 to J.-F.C), Start-up Fund (Grant #OJQDSP2022007 to J.-F.C.) from the Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Pro-gram Project from the State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University (Grant #J01-20190101 to J.-F.C), Key Research Project (Grant #2023C03079 to J.-F.C) from Zhejiang Provincial Administration of Science & Technology, and the Natural Science Foundation of Zhejiang Province of China (Grant #LQ22H090013 to X.Z).

Author information

Authors and Affiliations

Authors

Contributions

Xuhao Chen, Xiaoting Sun, and YuanYuan Ge collected materials and wrote the manuscript. Xuzhao Zhou and Jiang-fan Chen are responsible for critical revisions of the article. Funds of this article are supported by Xuzhao Zhou and Jiang-fan Chen. All authors revised and agreed on the final version of the manuscript.

Corresponding authors

Correspondence to Xuzhao Zhou or Jiang-Fan Chen.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Sun, X., Ge, Y. et al. Targeting adenosine A2A receptors for early intervention of retinopathy of prematurity. Purinergic Signalling (2024). https://doi.org/10.1007/s11302-024-09986-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11302-024-09986-x

Keywords

Navigation