Skip to main content
Log in

Confined Mn2+ enables effective aerobic oxidation catalysis

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Effective and mild activation of O2 is essential but challenging for aerobic oxidation. In heterogeneous catalysis, high-valence manganese oxide (e.g., +4) is known to be active for the oxidation, whereas divalent MnO is ineffective due to its limited capacity to supply surface oxygen and its thermodynamically unstable structure when binding O2 in reaction conditions. Inspired by natural enzymes that rely on divalent Mn2+, we discovered that confining Mn2+ onto the Mn2O3 surface through a dedicated calcination process creates highly active catalysts for the aerobic oxidation of 5-hydroxymethylfurfural, benzyl alcohol, and CO. The Mn2O3-confined Mn2+ is undercoordinated and efficiently mediates O2 activation, resulting in 2–3 orders of magnitude higher activity than Mn2O3 alone. Through low-temperature infrared spectroscopy, we distinguished low-content Mn2+ sites at Mn2O3 surface, which are difficult to be differentiated by X-ray photoelectron spectroscopy. The combination of in-situ energy-dispersive X-ray absorption spectroscopy and X-ray diffraction further provides insights into the formation of the newly identified active Mn2+ sites. By optimizing the calcination step, we were able to increase the catalytic activity threefold further. The finding offers promising frontiers for exploring active oxidation catalysts by utilizing the confinement of Mn2+ and often-ignored calcination skills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Fu Q, Li WX, Yao Y, Liu H, Su HY, Ma D, Gu XK, Chen L, Wang Z, Zhang H, Wang B, Bao X. Science, 2010, 328: 1141–1144

    Article  CAS  PubMed  Google Scholar 

  2. Shi Z, Zhang C, Tang C, Jiao N. Chem Soc Rev, 2012, 41: 3381–3430

    Article  CAS  PubMed  Google Scholar 

  3. Huang X, Akdim O, Douthwaite M, Wang K, Zhao L, Lewis RJ, Pattisson S, Daniel IT, Miedziak PJ, Shaw G, Morgan DJ, Althahban SM, Davies TE, He Q, Wang F, Fu J, Bethell D, Mcintosh S, Kiely CJ, Hutchings GJ. Nature, 2022, 603: 271–275

    Article  CAS  PubMed  Google Scholar 

  4. Ko M, Kim Y, Woo J, Lee B, Mehrotra R, Sharma P, Kim J, Hwang SW, Jeong HY, Lim H, Joo SH, Jang JW, Kwak JH. Nat Catal, 2021, 5: 37–44

    Article  Google Scholar 

  5. Zhang Q, Peng M, Gao Z, Guo W, Sun Z, Zhao Y, Zhou W, Wang M, Mei B, Du XL, Jiang Z, Sun W, Liu C, Zhu Y, Liu YM, He HY, Li ZH, Ma D, Cao Y. J Am Chem Soc, 2023, 145: 4166–4176

    Article  CAS  Google Scholar 

  6. Mu R, Fu Q, Guo X, Xu X, Tan D, Bao X. Sci China Chem, 2015, 58: 162–168

    Article  CAS  Google Scholar 

  7. Poulos TL. Chem Rev, 2014, 114: 3919–3962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hofrichter M. Enzyme Microb Tech, 2002, 30: 454–466

    Article  CAS  Google Scholar 

  9. Wariishi H, Valli K, Gold MH. J Biol Chem, 1992, 267: 23688–23695

    Article  CAS  PubMed  Google Scholar 

  10. Dunwell JM, Pickersgill RW, Woo EJ, Goodenough PW, Marvier AC. Nat Struct Biol, 2000, 7: 1036–1040

    Article  PubMed  Google Scholar 

  11. Opaleye O, Rose RS, Whittaker MM, Woo EJ, Whittaker JW, Pickersgill RW. J Biol Chem, 2006, 281: 6428–6433

    Article  CAS  PubMed  Google Scholar 

  12. Ramesh K, Chen L, Chen F, Liu Y, Wang Z, Han YF. Catal Today, 2008, 131: 477–482

    Article  CAS  Google Scholar 

  13. Hayashi E, Komanoya T, Kamata K, Hara M. ChemSusChem, 2017, 10: 654–658

    Article  CAS  PubMed  Google Scholar 

  14. Wang A, Chen Z, Zheng Z, Xu H, Wang H, Hu K, Yan K. Chem Eng J, 2020, 379: 122340

    Article  CAS  Google Scholar 

  15. Modén B, Oliviero L, Dakka J, Santiesteban JG, Iglesia E. J Phys Chem B, 2004, 108: 5552–5563

    Article  Google Scholar 

  16. Qiu Y, Xu GL, Yan K, Sun H, Xiao J, Yang S, Sun SG, Jin L, Deng H. J Mater Chem, 2011, 21: 6346

    Article  CAS  Google Scholar 

  17. Kantcheva M, Kucukkal MU, Suzer S. J Catal, 2000, 190: 144–156

    Article  CAS  Google Scholar 

  18. Angevaare PAJM, Aarden JRS, Linn JR, Zuur AP, Ponec V. J Electron Spectr Relat Phenomena, 1990, 54–55: 795–804

    Article  Google Scholar 

  19. Zhang J, Li M, Feng Z, Chen J, Li C. JPhys Chem B, 2006, 110: 927–935

    Article  CAS  Google Scholar 

  20. Julien CM, Massot M, Poinsignon C. SpectroChim Acta Part A-Mol Biomol Spectr, 2004, 60: 689–700

    Article  CAS  Google Scholar 

  21. Lutz HD, Müller B, Steiner HJ. J Solid State Chem, 1991, 90: 54–60

    Article  CAS  Google Scholar 

  22. Li Y, Lin L, Gao L, Mu R, Fu Q, Bao X. J Phys Chem C, 2021, 125: 7990–7998

    Article  CAS  Google Scholar 

  23. Fu Q, Yang F, Bao X. Acc Chem Res, 2013, 46: 1692–1701

    Article  CAS  PubMed  Google Scholar 

  24. Li H, Qin F, Yang Z, Cui X, Wang J, Zhang L. J Am Chem Soc, 2017, 139: 3513–3521

    Article  CAS  PubMed  Google Scholar 

  25. Kong X, Zhu Y, Fang Z, Kozinski JA, Butler IS, Xu L, Song H, Wei X. Green Chem, 2018, 20: 3657–3682

    Article  CAS  Google Scholar 

  26. Cao L, Liu W, Luo Q, Yin R, Wang B, Weissenrieder J, Soldemo M, Yan H, Lin Y, Sun Z, Ma C, Zhang W, Chen S, Wang H, Guan Q, Yao T, Wei S, Yang J, Lu J. Nature, 2019, 565: 631–635

    Article  CAS  PubMed  Google Scholar 

  27. Sheng TP, Wei Y, Jampani P, Li C, Dai FR, Huang S, Wang Z, Chen ZN. Sci China Chem, 2023, 66: 1714–1721

    Article  CAS  Google Scholar 

  28. Hayashi E, Yamaguchi Y, Kamata K, Tsunoda N, Kumagai Y, Oba F, Hara M. Am Chem Soc, 2019, 141: 890–900

    Article  CAS  Google Scholar 

  29. Sajid M, Zhao X, Liu D. Green Chem, 2018, 20: 5427–5453

    Article  CAS  Google Scholar 

  30. Wen Y, Zhang Y, He L, Li H, Zhuang Z, Yu Y. ACS Appl Nano Mater, 2022, 5: 11559–11566

    Article  CAS  Google Scholar 

  31. Fritsch S, Navrotsky A. J Am Ceramic Soc, 1996, 79: 1761–1768

    Article  CAS  Google Scholar 

  32. Stobbe ER, de Boer BA, Geus JW. Catal Today, 1999, 47: 161–167

    Article  CAS  Google Scholar 

  33. Bourane A, Bianchi D. J Catal, 2001, 202: 34–44

    Article  CAS  Google Scholar 

  34. Campbell C. J Catal, 1978, 54: 289–302

    Article  CAS  Google Scholar 

  35. Wang Y, Pei C, Zhao ZJ, Gong J. Sci China Chem, 2022, 65: 2038–2044

    Article  CAS  Google Scholar 

  36. Makwana V. J Catal, 2002, 210: 46–52

    Article  CAS  Google Scholar 

  37. Carrero CA, Schloegl R, Wachs IE, Schomaecker R. ACS Catal, 2014, 4: 3357–3380

    Article  CAS  Google Scholar 

  38. Grant JT, Venegas JM, McDermott WP, Hermans I. Chem Rev, 2018, 118: 2769–2815

    Article  CAS  PubMed  Google Scholar 

  39. Blaine RL, Kissinger HE. ThermoChim Acta, 2012, 540: 1–6

    Article  CAS  Google Scholar 

  40. Descorme C, Madier Y, Duprez D. J Catal, 2000, 196: 167–173

    Article  CAS  Google Scholar 

  41. Nakamoto, K, Griffiths PR, Handbook of vibrational spectroscopy. Heidelberg:John Wiley & Sons, Ltd. 2001

    Google Scholar 

  42. Kawasaki S, Kamata K, Hara M. ChemCatChem, 2016, 8: 3247–3253

    Article  CAS  Google Scholar 

  43. Frey K, Iablokov V, Sáfrán G, Osán J, Sajó I, Szukiewicz R, Chenakin S, Kruse N. J Catal, 2012, 287: 30–36

    Article  CAS  Google Scholar 

  44. Tang W, Wu X, Li D, Wang Z, Liu G, Liu H, Chen Y. J Mater Chem A, 2014, 2: 2544–2554

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2022YFA1503804), National Natural Science Foundation of China (22272031, 22102033), Science & Technology Commission of Shanghai Municipality (22ZR1408000, 22QA1401300) and the Fundamental Research Funds for the Central Universities (20720220008). We thank Dr. Fan Lin for the help in kinetic analysis and Prof. Xiulian Pan for the helpful discussions. We thank the staffs from BL05U beamline at Shanghai Synchrotron Radiation Facility, for assistance during data collection of the ED-XAS experiment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yifeng Zhu, Yong Cao or Xinhe Bao.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, D., Ma, S., Kong, X. et al. Confined Mn2+ enables effective aerobic oxidation catalysis. Sci. China Chem. 67, 1545–1553 (2024). https://doi.org/10.1007/s11426-023-1994-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1994-2

Navigation