Genetic surfing during the range expansion of an endangered large carnivore

Author:

Tensen LauraORCID,Currat Mathias,Davies-Mostert Harriet,Plessis Cole du,Fischer Klaus

Abstract

AbstractIn an effort to halt the global decline of large carnivores, reintroductions have become increasingly popular to establish satellite populations and reduce the risk of stochastic events. These artificial range expansions are typically formed by a small number of founders, which can lead to changes in population genetic structure. For instance, serial founder events can lead to neutral and even deleterious alleles reaching higher than expected frequencies along the front end of an expansion, referred to as gene surfing. One of the world’s most extensive range expansion programmes has been for endangered African wild dogs (Lycaon pictus). In this study, we examine the effect of continent-wide translocations on spatial genetic diversity, by determining what effect genetic surfing has on population structure in wild dogs, and measuring how long it will take for population structure to homogenize in the face of ongoing dispersal. We used a set of microsatellite loci to look at surfing alleles in five populations across southern Africa, and simulated the movement of these alleles forward in time under the current demographic scenario. We found that it would take about 150 generations for the expanding population to be 50% introgressed with genes from the free-roaming population. With the current rate of translocations, genetic differentiation in southern Africa will disappear, overturning the effects of genetic drift or surfing alleles. Understanding genetic patterns in expanding populations is of great interest to conservation, and we demonstrate that reintroduction programmes can help restore genetic diversity, and consequently adaptive potential, in recovering wildlife populations.

Funder

Universität Koblenz

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3