Incorporation of Pd Catalyst into Highly Effective Borophene Nanosheet Co-Catalyst for Electrokinetics and Electrochemical Oxygen Reduction Reactions

Author:

Mabhulusa Wendy,Sekhosana Kutloano Edward,Fuku Xolile

Abstract

AbstractTo improve the performance of the system, it is of great importance to develop efficient catalysts for ethanol (EtOH) electro-oxidation. Pd/B electrocatalyst was synthesized using a sonochemical method. Structural and electrochemical properties of the prepared nanomaterial were investigated using electrochemical and physical techniques such as Raman spectroscopy, electrochemical impedance spectroscopy (EIS), x-ray diffraction (XRD), zetersizer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and energy-dispersive x-ray spectroscopy (EDS) and cyclic voltammetry (CV). FTIR confirmed all the functional groups of carbon black, Pd/C, borophene, and Pd/B, and the crystallinity was investigated using XRD. EIS showed that Pd/B has a faster charge transfer and, through investigation using CV, Pd/B showed a more negative onset potential and higher current (−0.76 V vs. Ag|AgCl; 0.07 mA) than Pd/C (−0.65 V vs. Ag|AgCl; 0.05 mA), indicating a more catalytic behavior and tolerance of Pd/B. The active sites could be attributed to the addition of borophene. During the anodic sweeping direction of Pd/B electrocatalyst, it was observed that the ratio of backward peak current (Ibwd) to forward peak current (Ifwd), (Ibwd/Ifwd) of in a 2 M of NaOH + 2 M of EtOH is almost equal to (Ibwd/Ifwd) 1 which shows excellent tolerance of Pd/B to poisoning by ethanol intermediate species. The electron transfer rate (Ks) values for Pd/B at 0.1 M, 0.5 M, 1 M, 1.5 M, and 2 M were estimated to be 4.50 × 10−13 s−1, 1.08 × 10−12 s−1, 4.28 × 10−13 s−1, 5.25 × 10−14 s−1 and 9.35 × 10-14 s−1. At 2 M there is a faster electron transfer than at other concentrations which is also evidenced by the obtained diffusion values (D) of the system which were found to be 2.92 × 10−7 cm2 s−1, 4.72 × 10−8 cm2 s−1, 4.82 × 10−8 cm2 s−1, 1.22 × 10−7 cm2 s−1, and 9.12 × 10−8 cm2 s−1. The electrochemically active surface area (ECSA) is strongly related to intrinsic activity, Pd/B (1.85 cm2/mg × 10−5 cm2/mg) denotes the highest Pd-O stripping charge than Pd/C (1.13 cm2/mg × 10−5 cm2/mg).

Funder

University of South Africa

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3