Design of Replicated Open-Pore Aluminium Cellular Materials with a Non-Stochastic Structure for Sound Absorption Applications

Author:

Carbajo J.ORCID,Molina J. M.,Kim S.,Maiorano L. P.,Mosanenzadeh S. Ghaffari,Fang N. X.

Abstract

AbstractSeveral porous materials, especially natural fibres and polyurethane foams, are frequently used as sound absorbers in multiple noise reduction applications. Notwithstanding their excellent absorption performance, these materials usually lack the structural strength and fire resistance required for use in aggressive environments or situations requiring structural stability. This paper proposes the design of open-pore polymer and aluminum cellular materials with non-stochastic structures for sound absorption. These materials were fabricated using additive manufacturing (polymeric materials) and the replication method (aluminum materials), which involves infiltrating porous preforms formed by compacting spheres of a martyr material, such as NaCl, with liquid aluminum. The proposed materials can be employed as a resonator system when backed by an air cavity, with the change in cavity depth used to tune its sound absorption peak. Following the standard ASTM E1050, the sound absorption of these materials was investigated. In addition, the sound absorption performance of the materials was predicted using an Equivalent Circuit Method model. The experimental results are consistent with those predicted by the model, highlighting the potential of the microstructural and configurational design of these materials as sound absorbers. Graphical Abstract

Funder

Universidad de Alicante

Agencia Estatal de Investigación

Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3