Understanding the progress and challenges in the fields of thermo-catalysis and electro-catalysis for the CO2 conversion to fuels

Author:

Yadav V. S. K.ORCID,Al-Marri Mohammed J.,Saad Mohammed A. H. S.,Kumar Anand

Abstract

AbstractThe need to limit anthropogenic CO2 emissions and lower the atmospheric CO2 concentration makes CO2 conversion an imminent requirement. Availability of suitable facilities and prior understanding how electro and thermal catalysis work renders them as appealing platforms for conversion of CO2. Catalysts play a crucial part in the conversion of CO2 to chemicals in both processes. Catalysis is a process initiated by the interaction of reactants, intermediates, and products produced on the catalyst’s surface. Generally, higher temperatures in thermo-catalytic process or electrical potentials in electrocatalytic process are used to increase the reaction rate to get the desired results and to overcome the kinetic barrier. Several studies have been reported in both the processes with a desire to decrease the atmospheric CO2 concentration by stopping CO2 emissions at the site of generation itself. The viability of catalytic performance in both situations for the large-scale conversion of CO2 is still up for debate. In this review, we intend to focus on recent developments in CO2 conversion aided by diverse catalysts by analyzing and comparing proof-of-principle investigations on applied conditions, catalyst activity and stability for thermocatalytic and electrocatalytic CO2 conversions. The most common catalyst synthesis techniques employed in both experiments were analyzed. Primary goal of this review is to draw connections between the two fields in order to generate fresh insights that will lead to a more efficient and integrated CO2 conversion process.

Funder

Qatar University

Publisher

Springer Science and Business Media LLC

Subject

Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,Biomaterials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3