A critical review on direct catalytic hydrogasification of coal into CH4: catalysis process configurations, evaluations, and prospects

Author:

Yan Shuai,Feng Jun,Yuan Shenfu,Xia Zihong,Han Fengshuang,Qu Xuan,Bi Jicheng

Abstract

AbstractCoal catalytic hydrogasification (CCHG) is a straightforward approach for producing CH4, which shows advantages over the mature coal-to-CH4 technologies from the perspectives of CH4 yield, thermal efficiency, and CO2 emission. The core of CCHG is to make carbon in coal convert into CH4 efficiently with a catalyst. In the past decades, intensive research has been devoted to catalytic hydrogasification of model carbon (pitch coke, activated carbon, coal char). However, the chemical process of CCHG is still not well understood because the coal structure is more complicated, and CCHG is a combination of coal catalytic hydropyrolysis and coal char catalytic hydrogasification. This review seeks to shed light on the catalytic process of raw coal during CCHG. The configuration of suitable catalysts, operating conditions, and feedstocks for tailoring CH4 formation were identified, and the underlying mechanisms were elucidated. Based on these results, the CCHG process was evaluated, emphasizing pollutant emissions, energy efficiency, and reactor design. Furthermore, the opportunities and strategic approaches for CCHG under the restraint of carbon neutrality were highlighted by considering the penetration of “green” H2, biomass, and CO2 into CCHG. Preliminary investigations from our laboratories demonstrated that the integrated CCHG and biomass/CO2 hydrogenation process could perform as an emerging pathway for boosting CH4 production by consuming fewer fossil fuels, fulfilling the context of green manufacturing. This work not only provides systematic knowledge of CCHG but also helps to guide the efficient hydrogenation of other carbonaceous resources such as biomass, CO2, and coal-derived wastes.

Funder

National Natural Science Foundation of China

A Project Supported by Scientific Research Fund of Zhejiang Provincial Education Department

Key research and development project of Shanxi Province

Scientific Research Incubation Program of Ningbo University of Technology

Scientific Research Project Funded by Ningbo University of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3