Fracture behavior and acoustic emission characteristics of sandstone samples with inclined precracks

Author:

Dou Litong,Yang Ke,Chi Xiaolou

Abstract

AbstractSandstone samples with precracks of different dip angles were collected from a coal mine roof and subjected to uniaxial compression tests, and acoustic emission (AE) and scanning electron microscopy (SEM) were used to study how the crack dip angle affected the fracture mechanism. In the precracked sandstone samples, as the dip angle between the crack line and loading direction decreased, so did the peak stress and its completion time. The SEM observations revealed a fracture transition from tensile cleavage to shear slip, which was manifested by a microstructure change from aggregate to staggered. According to energy conversion, a decreased crack dip angle results in gradually decreasing total and dissipative peak energies, whose variation amplitudes at different stages are consistent with those of the peak stress of the samples. The decreased crack dip angle lowered the stress required to trigger the first appearance of AE energy peaks and ring-down counts, as well as shortening the period before the occurrence of the first AE peak signal. However, the AE energy and ring-down count during the failure stage after the stress peak increased gradually. A stepped increase was observed in the AE ring-down count curves, with each step corresponding to a jump in the stress-strain curve. From the characteristics of the AE signal of the fracture of a precracked rock sample, the occurrence of joints or faults in the rock mass can be reasonably inferred. This is expected to provide a new method and approach for predicting coal and rock dynamic disasters.

Funder

the National Natural Science Foundation of China

the State Key Research Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3