Author:
Wang Lei,Zhang Rui,Wang Guoying,Zhao Jing,Yang Dong,Kang Zhiqin,Zhao Yangsheng
Abstract
AbstractWhen high-temperature steam is used as a medium to pyrolyze organic-rich shale, water steam not only acts as heat transfer but also participates in the chemical reaction of organic matter pyrolysis, thus affecting the generation law and release characteristics of gas products. In this study, based on a long-distance reaction system of organic-rich shale pyrolysis via steam injection, the effects of steam temperature and reaction distance on gas product composition are analyzed in depth and compared with other pyrolysis processes. The advantages of organic-rich shale pyrolysis via steam injection are then evaluated. The volume concentration of hydrogen in the gas product obtained via the steam injection pyrolysis of organic-rich shale is the highest, which is more than 60%. The hydrogen content increases as the reaction distance is extended; however, the rate of increase changes gradually. Increasing the reaction distance from 800 to 4000 mm increases the hydrogen content from 34.91% to 69.68% and from 63.13% to 78.61% when the steam temperature is 500 °C and 555 °C, respectively. However, the higher the heat injection temperature, the smaller the reaction distance required to form a high concentration hydrogen pyrolysis environment (hydrogen concentration > 60%). When the steam pyrolysis temperature is increased from 500 °C to 555 °C, the reaction distance required to form a high concentration of hydrogen is reduced from 3800 to 800 mm. Compared with the direct retorting process, the volume concentration of hydrogen obtained from high-temperature steam pyrolysis of organic-rich shale is 8.82 and 10.72 times that of the commonly used Fushun and Kivite furnaces, respectively. The pyrolysis of organic-rich shale via steam injection is a pyrolysis process in a hydrogen-rich environment.
Funder
Basic research program of Shanxi Province
Key Technologies Research and Development Program
National Natural Science Foundation of China
Key R & D and promotion projects in Henan Province
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献