Skip to main content

Physiologically-Based Pharmacokinetic (PBPK) Models in Toxicity Testing and Risk Assessment

  • Chapter
New Technologies for Toxicity Testing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 745))

Abstract

Physiologically-based pharmacokinetic (PBPK) modeling offers a scientifically-sound framework for integrating mechanistic data on absorption, distribution, metabolism and elimination to predict the time-course of parent chemical, metabolite(s) or biomarkers in the exposed organism. A major advantage of PBPK models is their ability to forecast the impact of specific mechanistic processes and determinants on the tissue dose. In this regard, they facilitate integration of data obtained with in vitro and in silico methods, for making predictions of the tissue dosimetry in the whole animal, thus reducing and/or refining the use of animals in pharmacokinetic and toxicity studies. This chapter presents the principles and practice of PBPK modeling, as well as the application of these models in toxicity testing and health risk assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. WHO. Assessing human health risks of chemicals: Derivation of guidance values for health-based exposure limits. Environmental Health Criteria 170, International Programme on Chemical Safety. Geneva: World

    Google Scholar 

  2. Health Canada. Human health risk assessment for priority substances. Ottawa: Environmental Health Directorate, Health Canada, 1994.

    Google Scholar 

  3. Younes M, Sonich-Mullin C, Meek ME et al. Risk: assessment and management. In: Herzstein JA, Bunn WB, Fleming LE, eds. International Occupational and Environmental Medicine. St Louis: Mosby, 1998:62–74.

    Google Scholar 

  4. Ritter L, Totman C, Krishnan K et al. Deriving incertainty factors for threshold chemical contaminants in drinking water. J Toxicol Environ Health B 2007; 10:527–557.

    CAS  Google Scholar 

  5. Sonich-Mullin C, Fielder R, Wiltse J et al. IPCS conceptual framework for evaluating a mode of action for chemical carcinogenesis. Regul Toxicol Pharm 2001; 34:46–52.

    Google Scholar 

  6. Boobis AR, Cohen SM, Dellarco V et al. IPCS framework for analyzing the relevance of a cancer mode of action for humans. Crit Rev Toxicol 2006; 36:781–92.

    PubMed  Google Scholar 

  7. Boobis AR, Doe JE, Heinrich-Hirsch B et al. IPCS framework for analysing the relevance of a noncancer mode of action for humans. Crit Rev Toxicol 2008; 38:87–96.

    PubMed  CAS  Google Scholar 

  8. NRC Risk Assessment in the Federal Government: Managing the Process. Washington: National Academy Press, 1983.

    Google Scholar 

  9. Andersen ME, Clewell HJ, Gargas ML et al. Physiologically based pharmacokinetics and the risk assessment process for methylene chloride. Toxicol Appl Pharmacol 1987; 87:185–205.

    PubMed  CAS  Google Scholar 

  10. Jarabek AM. Interspecies extrapolation based on mechanistic determinants of chemical disposition. Human Ecological Risk Assessment 1995; 1:641–662.

    Google Scholar 

  11. Jarabek AM. Inhalation RfC methodology: dosimetric adjusments and dose-response estimation of noncancer toxicity in the upper respiratory tract. Inhal Toxicol 1994; 6:301–325.

    CAS  Google Scholar 

  12. Monro A. Drug toxicokinetics: Scope and limitations that arise from species differences in pharmacodynamic and carcinogenic responses. J Pharm Biopharm 1994; 22:41–57.

    CAS  Google Scholar 

  13. Andersen ME, Krishnan K. Relating in vitro to in vivo exposures with physiologically based tissue dosimetry and tissue response models. In: Salem H, ed. Animal Test Alternatives: Refinement, Reduction, Replacement. New York: Marcel Dekker, 1995:9–26.

    Google Scholar 

  14. Andersen ME. Toxicokinetic modeling and its applications in chemical risk assessment. Toxicol Lett 2003; 138:9–27.

    PubMed  CAS  Google Scholar 

  15. Clewell HJ, III, Andersen ME, Barton HA et al. A consistent approach for the application of pharmacokinetic modeling in cancer and noncancer risk assessment. Environ Health Persp 2002; 110:85–93.

    Google Scholar 

  16. Reddy MB, Yang RSH, Clewell HJ, Andersen ME, eds. Physiologically Based Pharmacokinetic Modeling: Science and Application. Hoboken: John Wiley and Sons, 2005:420.

    Google Scholar 

  17. EPA. Approaches for the Application of Physiologically Based Pharmacokinetic (PBPK) Models and Supporting Data in Risk Assessment (Final Report) EPA/600/R-05/043A. Washington, DC: US Environmental Protection Agency, 2006.

    Google Scholar 

  18. EPA. Toxicological review of ethylene glycol monobutyl ether. In support of summary information on the IRIS. Washington, D.C.: US Environmental Protection Agency, 2006: Available at: http://www.epa.gov/iris/toxreviews/0500tr.pdf.

    Google Scholar 

  19. Lipscomb JC, Ohanian EV, eds. Toxicokinetics and Risk Assessment. New York: Informa Healthcare, 2006:361.

    Google Scholar 

  20. Bischoff KB. Physiogically-based pharmacokinetic modeling. Drinking Water and Health 1987; 8:36–64.

    Google Scholar 

  21. Clewell HJ 3rd, Andersen ME. Dose, species and route extrapolation using physiologically-based pharmacokinetic models. Drinking Water and Health 1987; 8:159–182.

    Google Scholar 

  22. Krishnan K, Johanson G. Physiologically based pharmacokinetic and toxicokinetic models in cancer risk assessment. J Environ Sci Health 2005; 23(C):31–53.

    Google Scholar 

  23. Gibaldi M, Perrier D. Pharmacokinetics. New York: Marcel Dekker, 1982.

    Google Scholar 

  24. Wagner JG. Fundamentals of Clinical Pharmacokinetics. Hamilton, Illinois: Drug International, 1975

    Google Scholar 

  25. Renwick AG. Pharmacokinetics in toxicology. In: Hayes WA, ed. Principles and Methods of Toxicology. New York: Raven Press, 1994:101–147.

    Google Scholar 

  26. Clewell HJ 3rd, Andersen ME. Risk assessment extrapolations and physiological modeling. Toxicol Ind Health 1985; 1(4):111–131.

    PubMed  CAS  Google Scholar 

  27. Haggard HW. The absorption, distribution and elimination of ethyl ether. Analysis of the mechanism of the absorption and elimination of such a gas or vapor as ethyl ether. J Biol Chem 1924; 59:753–770.

    CAS  Google Scholar 

  28. Kety SS. The theory and application of the exchange of inert gas at the lungs. Pharmacol Rev 1951; 3:1–41.

    PubMed  CAS  Google Scholar 

  29. Fiserova-Bergerova V. Mathematical modeling of inhalation exposure. J Combust Toxicol 1975; 32:201–210.

    Google Scholar 

  30. Fiserova-Bergerova V. Toxicokinetics of organic solvents. Scand J Work Environ Health 1985; 11(Suppl 1–7):7–21.

    PubMed  CAS  Google Scholar 

  31. Bischoff KB, Dedrick RL, Zakharo DS et al. Methotrexate pharmacokinetics. J Pharm Sci 1971; 60:1128–1133.

    PubMed  CAS  Google Scholar 

  32. Mapleson WW. An electric analog for uptake and elimination in man. J Appl Physiol 1963; 18:197–204.

    PubMed  CAS  Google Scholar 

  33. Riggs DS. The Mathematical Approach to Physiological Problems: A Critical Primer. Cambridge: MIT Press, 1970.

    Google Scholar 

  34. Teorell T. Kinetics of distribution of substances administered to the body. I. The extravascular modes of administration. Arch Int Pharmacodyn 1937; 57:205–225.

    CAS  Google Scholar 

  35. Teorell T. Kinetics of distribution of substances administered to the body. II. The intravascular modes of administration. Arch Int Pharmacodyn 1937; 57:226–240.

    CAS  Google Scholar 

  36. Clewell RA, Clewell HJ 3rd. Development and specification of physiologically based pharmacokinetic models for use in risk assessment. Reg Toxicol Pharmacol 2008; 50(1):129–43.

    CAS  Google Scholar 

  37. Krishnan K, Andersen ME. Physiologically-based pharmacokinetic and toxicokinetic modeling. In: Wallace Hayes A, ed. Principles and Methods in Toxicology. New York: Taylor and Francis Inc., 2007:232–291.

    Google Scholar 

  38. Gerlowski LE, Jain RK. Physiologically based pharmacokinetic modeling: Principles and applications. J Pharml Sci 1983; 72:1103–1127.

    CAS  Google Scholar 

  39. Robinson PJ. Effect of microcirculatory heterogeneity in the determination of pharmacokinetic parameters: implications for risk assessment. Drug Metab Rev 1991; 23:43–64.

    PubMed  CAS  Google Scholar 

  40. Robinson PJ. Physiologically-based liver modeling and risk assessment. Risk Anal 1992; 12:139–148.

    PubMed  CAS  Google Scholar 

  41. Arms AD, Travis CC. Reference Physiological Parameters in Pharmacokinetic Modeling. Office of Health and Environmental Assessment NTIS PB 88-196019. Washington D.C.: US Environmental Protection Agency, 1988.

    Google Scholar 

  42. Brown RP, Delp MD, Lindstedt SL et al. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Indust Health 1997; 13:407–484.

    CAS  Google Scholar 

  43. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharmac Res 1993; 10:1093–1095.

    CAS  Google Scholar 

  44. Gentry PR, Haber LT, McDonald TB et al. Data for physiologically based pharmacokinetic modeling in neonatal animals: physiological parameters in mice and Sprague-Dawley rats. J Child Health 2004; 2(3-4):363–411.

    Google Scholar 

  45. Thompson C, Johns D, Sonawane B et al. Database for physiologically based pharmacokinetic modeling: physiological data for healthy and health-impaired elderly. J Toxicol Environ Health B 2009; 12:1–24.

    Google Scholar 

  46. Balaz S, Lukacova V. A model-based dependence of the human tissue/blood partition coefficients of chemicals on lipophilicity and tissue composition. QSAR 2000; 18:361–368.

    Google Scholar 

  47. Béliveau M, Lipscomb J, Tardif R et al. Quantitative structure-property relationships for interspecies extrapolation of the inhalation pharmaconkinetics of organic chemicals. Chem Res Toxicol 2005; 18:475–485.

    PubMed  Google Scholar 

  48. DeJongh J, Verhaar HJM, Hermens JLM. A quantitative property-property relationship (QPPR) approach to estimate in vitro tissue-blood partition coefficients of organic chemical sin rats and humans. Arch Toxicol 1997; 72:17–25.

    PubMed  CAS  Google Scholar 

  49. Poulin P, Krishnan K. A biologically-based algorithm for predicting human tissue:blood partition coefficients of organic chemicals. Human Exp Toxicol 1995; 14:273–280.

    CAS  Google Scholar 

  50. Poulin P, Krishnan K. A mechanistic algorithm for predicting blood: air partition coefficients of organic chemicals with the consideration of reversible binding in hemoglobin. Toxicol Appl Pharmacol 1996; 136:131–137.

    PubMed  CAS  Google Scholar 

  51. Poulin P, Krishnan K. A tissue composition-based algorithm for predicting tissue:air partition coefficients of organic chemicals. Toxicol Appl Pharmacol 1996; 136:126–130.

    PubMed  CAS  Google Scholar 

  52. Obach RS, Baxter JG, Liston TE et al. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther 1997; 283:46–58.

    PubMed  CAS  Google Scholar 

  53. Poulin P, Theil FP. A priori prediction of tissue:plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J Pharm Sci 2000; 89:16–35.

    PubMed  CAS  Google Scholar 

  54. Gargas ML, Burgess RJ, Voisard DE et al. Partition coefficients of low molecular weight volatile chemicals in various liquids and tissues. Toxicol Appl Pharmacol 1989; 98:87–99.

    PubMed  CAS  Google Scholar 

  55. Gargas ML. An exhaled breath chamber system for assessing rates of metabolism and rates of gastrointestinal absorption with volatile chemicals. J Am Coll Toxicol 1990; 9:447–453.

    CAS  Google Scholar 

  56. Gargas ML, Clewell HJ, Andersen ME et al. Gas uptake inhalation techniques and the rates of metabolism of chloromethanes, chloroethanes and chloroethylenes in the rat. Inhalation Toxicol 1990; 2:295–319.

    CAS  Google Scholar 

  57. Dokoumetzidis A, Kalantzi L, Fotaki N et al. Predictive models for oral drug absorption: from in silico methods to integrated dynamical models. Expert Opin Drug Metab Toxicol 2007; 3(4):491–505.

    PubMed  CAS  Google Scholar 

  58. Fagerholm U. Prediction of human pharmacokinetics-gastrointestinal absorption. J Pharm Pharmacol 2007; 59(7):905–16.

    PubMed  CAS  Google Scholar 

  59. Dedrick RL, Forrester DD, Ho DHW et al. In vitro-in vivo correlation of drug metabolism: deamination of 1-β-D-arabinosyl cytosine. Biochem Pharmacol 1972; 21:1–16.

    PubMed  CAS  Google Scholar 

  60. Nakajima T, Sato A. Enhanced activity of liver drug-metabolizing enzymes for aromatic and chlorinated hydrocarbons following food deprivation. Toxicol Appl Pharmacol 1979; 50:549–556.

    PubMed  CAS  Google Scholar 

  61. Sato A, Nakajima T. A vial equilibration method to evaluate the drug metabolizing enzyme activity for volatile hydrocarbons. Toxicol Appl Pharmacol 1979; 47:41–46.

    PubMed  CAS  Google Scholar 

  62. Hilderbrand RL, Andersen ME, Jensen LJ. Prediction of in vivo kinetic constants for metabolism of inhaled vapors from kinetic constants measured in vitro. Fundam Appl Toxicol 1981; 1:403–409.

    PubMed  CAS  Google Scholar 

  63. Lin JH, Sugiyama Y, Awazu S et al. Physiological pharmacokinetics of ethoxybenzamine based on biochemical data obtained in vitro as well as on physiological data. J Pharmacokin Biopharm 1982; 10:649–661.

    CAS  Google Scholar 

  64. Mortensen B, Nilsen OG. Allometric species comparison of toluene and n-hexane metabolism: prediction of hepatic clearance in man from experiments with rodent liver S9 in headspace vial equilibration system. Pharmacol Toxicol 1988; 82:183–188.

    Google Scholar 

  65. Reitz RH, Mandrela AL, Guengerich FP et al. In vitro metabolism of methylene chloride in human and animal tissues: Use in physiologically-based pharmacokinetic models. Toxicol Appl Pharmacol 1989; 97:230–246.

    PubMed  CAS  Google Scholar 

  66. Reitz RH, Mendrala AL, Park CN et al. Incorporation of in vitro enzyme data into the physiologically-based pharmacokinetic (PBPK) model for methylene chloride: implications for risk assessment. Toxicol Lett 1988; 43:97–116.

    PubMed  CAS  Google Scholar 

  67. Gearheart JM, Jepson GW, Clewell HJ et al. A physiologically-based model for the in vivo inhibition of acetylcholinesterase by diisopropylfluorophosphate. Toxicol Appl Pharmacol 1990; 106:295–310.

    Google Scholar 

  68. DeJongh J, Blaauboer BJ. In vitro-based and in vivo-based simulations of benzene uptake and metabolism in rats. Altern Lab Anim-ATLA 1996; 24:179–190.

    Google Scholar 

  69. DeJongh J, Blaauboer BJ. Simulation of toluene kinetics in the rat by a physiologically based pharmacokinetic model with application of biotransformation parameters derived independently in vitro and in vivo. Fundam Appl Toxicol 1996; 32:260–268.

    PubMed  CAS  Google Scholar 

  70. DeJongh J, Blaauboer BJ. Evaluation of in vitro-based simulations of toluene uptake and metabolism in rats. Toxicol In Vitro 1997; 11:485–489.

    PubMed  CAS  Google Scholar 

  71. Iwatsubo T, Suzuki H, Sugiyama Y et al. Prediction of species differences (rats, dogs, humans) in the in vivo metabolic clearance of YM796 by the liver from in vitro data. J Pharmacol Exp Ther 1997; 283:462–469.

    PubMed  CAS  Google Scholar 

  72. Mortensen B, Lokken T, Zahlsen K et al. Comparison and in vivo relevance of two different in vitro headspace metabolic systems: liver S9 and liver slices. Pharmacol Toxicol 1997; 81:35–41.

    PubMed  CAS  Google Scholar 

  73. Lipscomb JC, Barton HA, Tornero-Velez R et al. The metabolic rate constants and specific activity of human and rat hepatic cytochrome P-450 2E1 toward toluene and chloroform. J Toxicol Environ Health 2004; 67(A):537–553.

    CAS  Google Scholar 

  74. Krishnan K, Gargas ML, Andersen ME et al. In vitro toxicology and risk assessment. Altern Meth Toxicol 1993; 9:185–203.

    CAS  Google Scholar 

  75. Lipscomb JC, Fisher JW, Confer PD et al. In vitro to in vivo extrapolation for trichloroethylene metabolism in humans. Toxicol Appl Pharmacol 1998; 152:376–387.

    PubMed  CAS  Google Scholar 

  76. Poet TS, Wu H, English JC et al. Metabolic rate constants for hydroquinone in F344 rat and human liver isolated hepatocytes: application to a PBPK model. Toxicol Sci 2004; 82:9–25.

    PubMed  CAS  Google Scholar 

  77. Béliveau M, Krishnan K. In silico approaches for developing physiologically based pharmacokinetic (PBPK) models. In: Salem H, Katz S, eds. Alternative Toxicological Methods. Boca Raton: CRC press, 2003:479–532.

    Google Scholar 

  78. Poulin P, Krishnan K. Molecular structure based prediction of the toxicokinetics of inhaled vapors in humans. Int J Toxicol 1999; 18:7–18.

    CAS  Google Scholar 

  79. Frederick CB, Potter DW, Chang-Mateu MI et al. A physiologically-based pharmacokinetic and pharmacodynamic model to describe the oral dosing of rats with ethyl acrylate and its implications for risk assessment. Toxicol Appl Pharmacol 1992; 114:246–260.

    PubMed  CAS  Google Scholar 

  80. Krishnan K, Gargas ML, Fennell TR et al. A physiologically-based description of ethylene oxide dosimetry in the rat. Toxicol Ind Health 1992; 8:121–140.

    PubMed  CAS  Google Scholar 

  81. Farris FF, Dedrick RL, King FG et al. Cisplatin pharmacokinetics: applications of a physiological model. Toxicol Lett 43:117–137.

    Google Scholar 

  82. Terasaki T, Iga T, Sugiyama Y et al. Nuclear binding as a determinant of tissue distribution of adriomycin, daunomycin, adriamycinol, daunorubicinol and actinomycin D. J Pharmacodyn 1984; 7:269–277.

    CAS  Google Scholar 

  83. WHO. Principles of characterizing and applying human exposure models. International Programme on Chemical Safety. Geneva: World Health Organization, 2004.

    Google Scholar 

  84. Cobelli C, Carson ER, Finkelstein L et al. Validation of simple and complex models in physiology and medicine. Am J Physiol 1984; 246:R 259–66.

    Google Scholar 

  85. Barton HA, Chiu WA, Setzer RW et al. Characterizing uncertainty and variability in physiologically-based pharmacokinetic models: state of the science and needs for research and implementation. Toxicol Sci 2007; 99(2):395–402.

    PubMed  CAS  Google Scholar 

  86. Haddad S, Gad SC, Tardif R et al. Satistical approaches for the validation of physiologically-based pharmacokinetic (PBPK) model. Toxicologist 1995; 15:48.

    Google Scholar 

  87. Iyengar S, Rao M. Statistical techniques in modeling of complex systems: single and multiresponse models. IEEE Transactions on Systems, Man and Cybernetics 1983; SMC-13:175-188.

    Google Scholar 

  88. Krishnan K, Haddad S, Pelekis M et al. A simple index for representing the discrepancy between simulations of physiological pharmacokinetic models and experimental data. Toxicol Ind Health 1995; 11(4):413–22.

    PubMed  CAS  Google Scholar 

  89. Anderson MW, Eling TE, Lutz RJ et al. The construction of a pharmacokinetic model for the disposition of PCBs in the rat. Clin Pharmacol Ther 1977; 22:765–773.

    PubMed  CAS  Google Scholar 

  90. Benignus VA, Boyes WK, Bushnell PJ et al. A dosimetric analysis of behavioral effects of acute toluene exposure in rats and humans. Toxicol Sci 1998; 43:186–195.

    PubMed  CAS  Google Scholar 

  91. Chiu WA, Barton HA, Dewoskin RS et al. Evaluation of physiologically based pharmacokinetic models for use in risk assessment. J Appl Toxicol 2007; 27:218–237.

    PubMed  CAS  Google Scholar 

  92. Clark LH. Framework for evaluation of physiologically-based pharmacokinetic models for use in safety or risk assessment. Risk Anal 2004; 24(6):1697–1717.

    PubMed  Google Scholar 

  93. Van Ommen B, de Jongh J, van de Sandt J et al. Computer-aided biokinetic modelling combined with in vitro data. Toxicol In Vitro 1995; 9:537–542.

    PubMed  Google Scholar 

  94. Quick DJ, Shuler ML. Use of in vitro data for construction of a physiologically based pharmacokinetic model for naphthalene in rats and mice to probe species differences. Biotechnol Prog 2000; 15:540–555.

    Google Scholar 

  95. MacGregor JT, Collins JM, Sugiyama Y et al. In vitro human tissue models in risk assessment: report of a consensus-building workshop. Toxicol Sci 2001; 59(1):17–36.

    PubMed  CAS  Google Scholar 

  96. Hissink EM, Bogaards JJP, Freidig AP et al. The use of in vitro metabolic parameters and physiologically based pharmacokinetic (PBPK) modeling to explore the risk assessment of trichloroethylene. Environ Toxicol Pharmacol 2002; 11:259–271.

    PubMed  CAS  Google Scholar 

  97. Kamgang F, Peyret T, Krishnan K et al. An intergrated QSPR-PBPK modeling approach for the in vitro-in vivo extrapolation of pharmacokinetics in rats. SAR and QSAR in Environ Res 2008; 19(7–8):1–12.

    Google Scholar 

  98. Yamaguchi T, Yabuki M, Saito S et al. Research to develop a predicting system of mammalian subacute toxicity (3) construction of a predictive toxicokinetics model. Chemosphere 1996; 33:2441–2468.

    PubMed  CAS  Google Scholar 

  99. Beliveau M, Krishnan K. Estimation of rat blood:air partition coefficients of volatile organic chemicals using reconstituted mixtures of blood components. Toxicol Lett 2000; 116:183–188.

    PubMed  CAS  Google Scholar 

  100. Blaauboer BJ. The integration of data on physio-chemical properties, in vitro-derived toxicity data and physiologicaly based kinetic and dynamic as modelling a tool in hazard and risk assessment. A commentary. Toxicol Lett 2004; 138:161–171.

    Google Scholar 

  101. DeWoskin RS, Lipscomb JC, Thompson C et al. Pharmacokinetic/physiologically based pharmacokinetic models in integrated risk information system assessments. In: Lipscomb JC, Ohanian EV, eds. Toxicokinetics and Risk Assessment. New York: Informa Healthcare, 2007:301–348.

    Google Scholar 

  102. Leung HW, Paustenbach DJ. Physiologically based pharmacokinetic and pharmacodynamic modeling in health risk assessment and characterization of hazardous substances. Toxicol Lett 1995; 79(1–3):55–65.

    PubMed  CAS  Google Scholar 

  103. Andersen ME, Clewell HJ, III, Gargas ML et al. Physiologically-based pharmacokinetic modeling with dichloromethane, its metabolite carbon monoxide and blood carboxyhemoglobin in rats and humans. Toxicol Appl Pharmacol 1991; 108:14–27.

    PubMed  CAS  Google Scholar 

  104. Singh DV, Spitzer HL, White, PD et al. Addendum to the health risk assessment for dichloromethane. Updated carcinogenicity assessment for dichloromethane. EPA 600/8-82/004F. Washington, DC: US Environmental Protection Agency, 1987.

    Google Scholar 

  105. Krishnan K, Andersen ME. Physiological modeling and cancer risk assessment. In: Rescingo A, Thakkur A, eds. New Trends in Pharmacokinetics. New York: Plenum Press, 1991:335–354.

    Google Scholar 

  106. Clewell HJ, Gentry RP, Gearhart JM et al. Comparison of cancer risk estimates for vinyl chloride using animal and human data with a PBPK model. Sci Total Environ 2001; 274:37–66.

    PubMed  CAS  Google Scholar 

  107. Dourson ML, Felter SP, Robinson D et al. Evolution of science-based uncertainty factors in noncancer risk assessment. Reg Toxicol Pharm 1996; 24:108–120.

    CAS  Google Scholar 

  108. Corley RA, Mandrela AL, Smith FA et al. Development of a physiologically-based pharmacokinetic model for chloroform. Toxicol Appl Pharmacol 1990; 103:512–527.

    PubMed  CAS  Google Scholar 

  109. Yokogawa K, Nakashima E, Ishizaki J et al. Relationships in the structure-tissue distribution of basic drugs in the rabbit. Pharm Res 1990; 7:691–696.

    PubMed  CAS  Google Scholar 

  110. Yata N, Toyoda T, Murakami T et al. Phosphatidylserine as a determinant for the tissue distribution of weakly basic drugs in rats. Pharm Res 1990; 7:1019–1025.

    PubMed  CAS  Google Scholar 

  111. Abraham MH, Weathersby PK. Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues. J Pharm Sci 1994; 83:1450–1456.

    PubMed  CAS  Google Scholar 

  112. Abraham MH, Ibrahim A, Acree WE Jr et al. Air to blood distribution of volatile organic compounds: a linear free energy analysis. Chem Res Toxicol 2005; 18:904–911.

    PubMed  CAS  Google Scholar 

  113. Abraham, MH, Ibrahim A, Acree WE Jr et al. Air to brain, blood to brain and plasma to brain distribution of volatile organic compounds: linear free energy analyses. Eur J Med Chem 2006; 41:494–502.

    PubMed  CAS  Google Scholar 

  114. Abraham MH, Ibrahim A, Acree WE Jr et al. Air to muscle and blood/plasma to muscle distribution of volatile organic compounds and drugs: linear free energy analyses. Chem Res Toxicol 2006; 19:801–808.

    PubMed  CAS  Google Scholar 

  115. Abraham MH, Ibrahim A. Blood or plasma to skin distribution of drugs: a linear free energy analysis. Int J Pharm 2007; 329:129–134.

    PubMed  CAS  Google Scholar 

  116. Abraham MH, Ibrahim A, Acree WE Jr et al. Air to liver partition coefficients for volatile organic compounds and blood to liver partition coefficients for volatile organic compounds and drugs. Eur J Med Chem 2007; 42:743–751.

    PubMed  CAS  Google Scholar 

  117. Abraham MH, Ibrahim A, Acree WE Jr et al. Air to lung partition coefficients for volatile organic compounds and blood to lung partition coefficients for volatile organic compounds and drugs. Eur J Med Chem 2008; 43:478–485.

    PubMed  CAS  Google Scholar 

  118. Kaliszan R, Nasal A, Turowski M et al. Quantitative structure-retention relationships in the examination of the topography of the binding site of antihistamine drugs on alpha 1-acid glycoprotein. J Chromatogr A 1996; 722:25–32.

    PubMed  CAS  Google Scholar 

  119. Lombardo F, Blake JF, Curatolo WJ et al. Computation of brain-blood partitioning of organic solutes via free energy calculations. J Med Chem 1996; 39:4750–4755.

    PubMed  CAS  Google Scholar 

  120. Blakey GE, Nestorov IA, Arundel PA et al. Quantitative structure-pharmacokinetics relationships: I. Development of a whole-body physiologically based model to characterize changes in pharmacokinetics across a homologous series of barbiturates in the rat. J Pharmacokinet Biopharm 1997; 25:277–312.

    PubMed  CAS  Google Scholar 

  121. Nestorov I, Aarons L, Rowland M et al. Quantitative structure-pharmacokinetics relationships: II. A mechanistically based model to evaluate the relationship between tissue distribution parameters and compound lipophilicity. J Pharmacokinet Biopharm 1998; 26:521–545.

    PubMed  CAS  Google Scholar 

  122. Luco JM. Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling. J Chem Inf Comput Sci 1999; 39:396–404.

    PubMed  CAS  Google Scholar 

  123. Bjorkman S. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol 2005; 59:691–704.

    PubMed  Google Scholar 

  124. Haddad S, Poulin P, Krishnan K et al. Ratio of lipid content in adipose tissues and blood as the sole determinant of the adipose tissue: blood partition coefficients of highly lipophilic organic chemicals. Chemosphere 2000; 40:839–843.

    PubMed  CAS  Google Scholar 

  125. Berezhkovskiy LM. Determination of volume of distribution at steady state with complete consideration of the kinetics of protein and tissue binding in linear pharmacokinetics. J Pharm Sci 2004; 93(2):364–74.

    PubMed  CAS  Google Scholar 

  126. Rodgers T, Leahy D, Rowland M et al. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci 2005; 94:1259–1276.

    PubMed  CAS  Google Scholar 

  127. Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci 2006; 95:1238–1257.

    PubMed  CAS  Google Scholar 

  128. WHO/IPCS. Principles of Characterizing and Applying PBPK Models in Risk Assessment. Geneva: World Health Organization, 2010. Available at: http:www.who.int/ipcs/methods/harmonization/areas/pbpk_models.pdf.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Lipscomb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Lipscomb, J.C., Haddad, S., Poet, T., Krishnan, K. (2012). Physiologically-Based Pharmacokinetic (PBPK) Models in Toxicity Testing and Risk Assessment. In: Balls, M., Combes, R.D., Bhogal, N. (eds) New Technologies for Toxicity Testing. Advances in Experimental Medicine and Biology, vol 745. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3055-1_6

Download citation

Publish with us

Policies and ethics