Abstract
AbstractSelf-shaping systems offer a promising approach for making complex 3D geometries from the material-driven transformation of 2D sheets. However, current research development of such systems is focused on small-scale applications. This study proposes a self-shaping composite for generation of larger-scale curved surfaces suitable for spatial structures. The composite arises from the novel combination of a perforated plate passive layer and a heat-shrinkable active layer. Experimental investigations are undertaken to assess the influence of perforation parameters of the passive layer over the degree of curvature generated in the self-shaping composite system. A 3D scanner and parametric curvature evaluation tool were used to extract and analyse the fabricated surface curvatures. Three key deformation characteristics were identified: the generated surface is cylindrical with dominant curvature in the x-direction; curvature is approximately uniform across the surface width and length; and curvature is strongly influenced by perforation bridge and strap length parameters. Results of this study support the application of self-shaping curved surfaces for customizable discrete structure parts.
Publisher
Springer Science and Business Media LLC