On-farm cereal rye biomass estimation using machine learning on images from an unmanned aerial system

Author:

KC Kushal,Romanko Matthew,Perrault Andrew,Khanal Sami

Abstract

AbstractThis study assesses the potential of using multispectral images collected by an unmanned aerial system (UAS) on machine learning (ML) frameworks to estimate cereal rye (Secale cereal L.) biomass. Multispectral images and ground-truth cereal rye biomass data were collected from 15 farmers’ fields up to three times between March and May in northwest Ohio. Images were processed to derive 13 vegetation indices (VIs). Out of 13 VIs, six optimal sets of VIs, including excess green (ExG), normalized green red difference index (NGRDI), soil adjusted vegetation index (SAVI), blue green ratio (B_G_ratio), red-edge triangular vegetation index (RTVI), and normalized difference red-edge (NDRE) were selected using the variance inflation factor (VIF) based feature selection approach. Six regression models including a multiple linear regression (MLR), elastic net (ENET), multivariate adaptive regression splines (MARS), support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGB) were investigated for estimation of cereal rye biomass based on the VIs. For most of the models, the six selected VIs performed better than or similar to the full set of 13 VIs with R2 ranging from 0.24 to 0.59 and RMSE ranging from 83.13 to 91.89 g/m2 during 10-fold cross-validation. During independent accuracy assessment with the selected set of VIs, XGB exhibited the highest R2 (0.67) and lowest RMSE (83.13 g/m2) and MAE (48.13 g/m2) followed by RF and ENET. For all the models, the agreement between observed and predicted biomass was high for biomass less than or equal to 200 g/m2 but decreased for biomass greater than 200 g/m2. When field-collected structural features were integrated with the selected VIs, the models showed improved performance, with R2 and RMSE of the models reaching up to 0.82 and 61.67 g/m2 respectively. Among the six VIs, SAVI showed the strongest impact on the model prediction for the best-performing RF and XGB regression models. The findings of this study demonstrate the potential of precisely estimating and mapping cereal rye biomass based on UAS-captured multispectral images. Timely information on cover crop growth can facilitate numerous decision-making processes, including planning the planting operations, and management of nutrients, weeds, and soil moisture to improve agronomic and environmental outcomes.

Funder

OSU L&L

SI Grant

USDA-AFRI

Hatch Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3