Destructive and non-destructive measurement approaches and the application of AI models in precision agriculture: a review

Author:

Islam Maidul,Bijjahalli Suraj,Fahey Thomas,Gardi AlessandroORCID,Sabatini Roberto,Lamb David W.

Abstract

AbstractThe estimation of pre-harvest fruit quality and maturity is essential for growers to determine the harvest timing, storage requirements and profitability of the crop yield. In-field fruit maturity indicators are highly variable and require high spatiotemporal resolution data, which can be obtained from contemporary precision agriculture systems. Such systems exploit various state-of-the-art sensors, increasingly relying on spectrometry and imaging techniques in association with advanced Artificial Intelligence (AI) and, in particular, Machine Learning (ML) algorithms. This article presents a critical review of precision agriculture techniques for fruit maturity estimation, with a focus on destructive and non-destructive measurement approaches, and the applications of ML in the domain. A critical analysis of the advantages and disadvantages of different techniques is conducted by surveying recent articles on non-destructive methods to discern trends in performance and applicability. Advanced data-fusion methods for combining information from multiple non-destructive sensors are increasingly being used to develop more accurate representations of fruit maturity for the entire field. This is achieved by incorporating AI algorithms, such as support vector machines, k-nearest neighbour, neural networks, and clustering. Based on an extensive survey of recently published research, the review also identifies the most effective fruit maturity indices, namely: sugar content, acidity and firmness. The review concludes by highlighting the outstanding technical challenges and identifies the most promising areas for future research. Hence, this research has the potential to provide a valuable resource for the growers, allowing them to familiarize themselves with contemporary Smart Agricultural methodologies currently in use. These practices can be gradually incorporated from their perspective, taking into account the availability of non-destructive techniques and the use of efficient fruit maturity indices.

Funder

FoodAgility CRC

Royal Melbourne Institute of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3