Boundedness and Unboundedness in Total Variation Regularization

Author:

Bredies Kristian,Iglesias José A.ORCID,Mercier Gwenael

Abstract

AbstractWe consider whether minimizers for total variation regularization of linear inverse problems belong to$$L^\infty $$Leven if the measured data does not. We present a simple proof of boundedness of the minimizer for fixed regularization parameter, and derive the existence of uniform bounds for sufficiently small noise under a source condition and adequate a priori parameter choices. To show that such a result cannot be expected for every fidelity term and dimension we compute an explicit radial unbounded minimizer, which is accomplished by proving the equivalence of weighted one-dimensional denoising with a generalized taut string problem. Finally, we discuss the possibility of extending such results to related higher-order regularization functionals, obtaining a positive answer for the infimal convolution of first and second order total variation.

Funder

State of Upper Austria

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Control and Optimization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3