1. Aloise, D., Damasceno, N. C., Mladenović, N., & Pinheiro, D. N. (2017). On strategies to fix degenerate k-means solutions. Journal of Classification, 34(2), 165–190.
2. Arcones, M. A., & Giné, E. (1992). On the bootstrap of M-estimators and other statistical functionals. In R. Lepage, & L. Billard (Eds.) Exploring the limits of the bootstrap (pp. 13–47). New York: Wiley.
3. Arthur, D., & Vassilvitskii, S. (2007). k-means++: the advantages of careful seeding. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 1027–1035).
4. Äyrämö, S., Kärkkäinen, T., & Majava, K. (2007). Robust refinement of initial prototypes for partitioning-based clustering algorithms. In C.H. Skiadas (Ed.) Recent advances in stochastic modelling and data analysis (pp. 473–482). Crete: World Scientific.
5. Bradley, P. S., & Fayyad, U. (1998). Refining initial points for k-means clustering. In Proceedings of the 15th International Conference of Machine Learning (pp. 91–99).