Modeling urban air temperature using satellite-derived surface temperature, meteorological data, and local climate zone pattern—a case study in Szeged, Hungary

Author:

Guo Yuchen,Unger János,Khabibolla Almaskhan,Tian Guohang,He Ruizhen,Li Huawei,Gál Tamás

Abstract

AbstractUrban air temperature is a crucial variable for many urban issues. However, the availability of urban air temperature is often limited due to the deficiency of meteorological stations, especially in urban areas with heterogeneous land cover. Many studies have developed different methods to estimate urban air temperature. However, meteorological variables and local climate zone (LCZ) have been less used in this topic. Our study developed a new method to estimate urban air temperature in canopy layer during clear sky days by integrating land surface temperature (LST) from MODIS, meteorological variables based on reanalysis data, and LCZ data in Szeged, Hungary. Random forest algorithms were used for developing the estimation model. We focused on four seasons and distinguished between daytime and nighttime situations. The cross-validation results showed that our method can effectively estimate urban air temperature, with average daytime and nighttime root mean square error (RMSE) of 0.5 ℃ (R2 = 0.99) and 0.9 ℃ (R2 = 0.95), respectively. The results based on a test dataset from 2018 to 2019 indicated that the optimal model selected by cross-validation had the best performance in summer, with time-synchronous RMSE of 2.1 ℃ (R2 = 0.6, daytime) and 2.2 ℃ (R2 = 0.86, nighttime) and seasonal mean RMSE of 1.5 ℃ (R2 = 0.34, daytime) and 1.2 ℃ (R2 = 0.74, nighttime). In addition, we found that LCZ was more important at night, while meteorological data contributed more to the model during the daytime, which revealed the temporal mechanisms of the effect of these two variables on air temperature estimation. Our study provides a novel and reliable method and tool to explore the urban thermal environment for urban researchers.

Funder

University of Szeged Open Access Fund

Chinese Scholarship Council

Stipendium Hungaricum Scholarship

Hungarian Scientific Research Fund

Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

University of Szeged

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3