Author:
Salas-Martínez Fernando,Márquez-Grajales Aldo,Valdés-Rodríguez Ofelia-Andrea,Palacios-Wassenaar Olivia-Margarita,Pérez-Castro Nancy
Publisher
Springer Science and Business Media LLC
Reference106 articles.
1. Abdulla N, Demirci M, Ozdemir S (2022) Design and evaluation of adaptive deep learning models for weather forecasting. Eng Appl Artif Intell 116:105440. https://doi.org/10.1016/j.engappai.2022.105440. Retrieved from https://www.sciencedirect.com/science/article/pii/S0952197622004304
2. Arias P, Bellouin N, Coppola E, Jones R, Krinner G, Marotzke J, Zickfeld K (2021) Climate change 2021: the physical science basis. contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change; technical summary. In: Masson Delmotte V et al (eds) The intergovernmental panel on climate change ar6. Retrieved from https://elib.dlr.de/137584/
3. Balti H, Abbes AB, Mellouli N, Sang Y, Farah IR, Lamolle M, Zhu Y (2021). Big data based architecture for drought forecasting using lstm, arima, and prophet: case study of the Jiangsu province, China. 2021 international congress of advanced technology and engineering (icoten) p 1–8
4. Baştanlar Y, Özuysal M (2014) Introduction to machine learning. In: Mirnomics: microrna biology and computational analysis, Totowa, NJ, Humana Press, pp 105–128. Retrieved from https://doi.org/10.1007/978-1-62703-748-8_7
5. Brownlee J (2017) Long short-term memory networks with python: develop sequence prediction models with deep learning. Machine Learning Mastery. Retrieved from https://books.google.com.mx/books?id=m7SoDwAAQBAJ