Light-off Investigation of Oxymethylene Ether (OME) Considering the Presence of the Exhaust Components Heptane, Carbon, and Nitrogen Monoxide

Author:

Rümmele FlorianORCID,Susdorf Alexander,Haider Syed Muhammad Salman,Szolak Robert

Abstract

AbstractSynthetic fuels and fuel blends like OMEs can contribute to tank-to-wheel CO2 emission savings. At the same time, it is known that these fuels have a lower exhaust temperature compared to conventional diesel. This effect has major impact on the exhaust after-treatment system, particularly in cold start conditions. This paper investigates the light-off behavior of exhaust gases containing OMEs by temperature-programmed oxidation experiments using a state-of-the-art oxidation catalyst. The main side product of catalytic oxidation of OMEs between 100 °C and the oxidation temperature T50, which was around 160 °C, was shown to be formaldehyde. While alkane oxidation, in this case heptane, was little influenced by OME oxidation, the oxidation temperature T50 of CO increases by more than 10 °C by OME addition. Nitrogen monoxide impeded the oxidation of OME in a similar way to the other components investigated. Due to the amount of FA produced and its toxicity, it could be concluded that it is necessary to heat up exhaust after-treatment systems of OME diesel engines even faster than conventional diesel exhaust after-treatment systems. The relatively high reactivity of OME on oxidation catalyst can be used by active thermal management approaches.

Funder

Bundesministerium für Wirtschaft und Energie

Fraunhofer Institute for Solar Energy Systems (ISE)

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Pollution,Automotive Engineering

Reference34 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3