Structure role of cesium bromide in calcium silicate glasses and glass ceramics

Author:

El Damrawi G.ORCID,Gharghar F.,Atef R.,Behairy A.

Abstract

AbstractTo make the interpretation of the complex xCsBr.(100 − x)(CaO:SiO2) glasses easier to study, the structure of glasses in a binary composition CaO–SiO2 is being initially investigated. The changes in the crystallization behavior of glasses and the local environment surrounding silicon atoms could be easily followed using X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) spectroscopy. The XRD pattern of the binary 50CaO–50SiO2 glass showed that its structure was amorphous. But when (CaO:SiO2) is replaced with CsBr, some sharp diffraction lines appear in system of the ternary xCsBr.(100 − x)(CaO:SiO2) glass composition. A Polycrystalline Cs2Ca(SiO3)2 structure is the primary phase in CsBr rich glasses. The results based on transmission electron microscopy (TEM-EDP) and X-ray diffraction pattern (XRD) are in excellent agreement, indicating that crystalline-clustered species develop in glasses enriched with CsBr. Both the NMR and FTIR spectra are clearly defined, and they contain different features that distinguish between different silicate structural subunits. One and two bridging oxygen atoms (BO) can be found in the main SiO4 structural units. Such units become less shielded due to increasing of nonbridging oxygen atoms (NBO) in the silicate network by increasing CsBr at the expense of both SiO2 and CaO. There is a good correlation between the data obtained from FTIR and NMR spectroscopy. Both techniques could differentiate between BO and NBO involved in the silicate structural units.

Funder

Mansoura University

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3