Linear Convergence of the Derivative-Free Proximal Bundle Method on Convex Nonsmooth Functions, with Application to the Derivative-Free $\mathcal{VU}$-Algorithm

Author:

Planiden C.ORCID,Rajapaksha T.ORCID

Abstract

AbstractProximal bundle methods are a class of optimisation algorithms that leverage the proximal operator to address nonsmoothness in the objective function efficiently. This study focuses on a derivative-free (DFO) proximal bundle method and one of its applications called the DFO $\mathcal{VU}$ VU -algorithm. These algorithms incorporate approximate proximal points as subprocedures in order to optimise convex nonsmooth functions based on approximated subdifferential information. Interestingly, the classical $\mathcal{VU}$ VU -algorithm, which operates on true subgradient values, achieves superlinear convergence. At each iteration, the algorithm divides the whole space into two: the smooth $\mathcal{U}$ U -space and the nonsmooth $\mathcal{V}$ V -space. It takes a Newton-like step on the $\mathcal{U}$ U -space and a proximal-point step on the $\mathcal{V}$ V -space, enabling it to handle both smooth and nonsmooth parts effectively and converge faster. In this work, we reveal the worst possible convergence rate for the DFO $\mathcal{VU}$ VU -method by showing the linear convergence of the DFO proximal bundle method. This will be done by presenting a suitable framework and using the subdifferential-based error bound on the distance to critical points.

Funder

The University of Wollongong

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3