Humidity and measurement of volatile propofol using MCC-IMS (EDMON)

Author:

Teucke TobiasORCID,Maurer F,Müller-Wirtz LM,Volk T,Sessler DI,Kreuer S

Abstract

AbstractThe bedside Exhaled Drug MONitor – EDMON measures exhaled propofol in ppbv every minute based on multi-capillary column – ion mobility spectrometry (MCC-IMS). The MCC pre-separates gas samples, thereby reducing the influence of the high humidity in human breath. However, preliminary analyses identified substantial measurement deviations between dry and humid calibration standards. We therefore performed an analytical validation of the EDMON to evaluate the influence of humidity on measurement performance. A calibration gas generator was used to generate gaseous propofol standards measured by an EDMON device to assess linearity, precision, carry-over, resolution, and the influence of different levels of humidity at 100% and 1.7% (without additional) relative humidity (reference temperature: 37°C). EDMON measurements were roughly half the actual concentration without additional humidity and roughly halved again at 100% relative humidity. Standard concentrations and EDMON values correlated linearly at 100% relative humidity (R²=0.97). The measured values were stable over 100min with a variance ≤ 10% in over 96% of the measurements. Carry-over effects were low with 5% at 100% relative humidity after 5min of equilibration. EDMON measurement resolution at 100% relative humidity was 0.4 and 0.6 ppbv for standard concentrations of 3 ppbv and 41 ppbv. The influence of humidity on measurement performance was best described by a second-order polynomial function (R²≥0.99) with influence reaching a maximum at about 70% relative humidity. We conclude that EDMON measurements are strongly influenced by humidity and should therefore be corrected for sample humidity to obtain accurate estimates of exhaled propofol concentrations.

Funder

Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes

Publisher

Springer Science and Business Media LLC

Subject

Anesthesiology and Pain Medicine,Critical Care and Intensive Care Medicine,Health Informatics

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3