Thermomechanical Behavior of Steels in Tension Studied with Synchronized Full-Field Deformation and Temperature Measurements

Author:

Soares G.C.ORCID,Vázquez-Fernández N.I.ORCID,Hokka M.ORCID

Abstract

AbstractDespite tensile testing being commonly used for investigating the mechanical behavior of materials, the occurrence of heterogeneous strain and increasing temperature at high strain rates make the experiment much more complex. This work presents a method integrating synchronous full-field stereo Digital Image Correlation (DIC) and Infrared Thermography (IRT). This method enabled high resolution investigations of the development of local temperatures and strains of the specimen during tensile loading of four steels at strain rates ranging from 2.5·10−4 to 900 s−1. The tests were monitored by a stereo setup of optical cameras and an infrared camera. Data acquisition was synchronized, and a pinhole camera model was used to translate the images from all cameras to the same three-dimensional space. The displacement vector fields from DIC were subtracted from the IRT images to represent the temperature maps in a Lagrangian coordinate system. The overall thermomechanical response of the materials was shown as 3D waterfall plots, which represent localized strain and temperature as a function of position and engineering strain. The results show that temperature increased homogeneously during uniform deformation at higher strain rates (10−2-900 s−1) and increased markedly with the onset of necking on the region of localized strain. At these strain rates, the localized increase of strain and temperature during necking were observed at the same global engineering strain and position, evidencing the spatial and temporal synchronization. The described method was used to accurately investigate the evolution of localized strain and temperature in both low and high strain rate regime.

Funder

Tampereen Yliopisto

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3