Low Cycle Fatigue of an Ultrafine Grained AA5083 Aluminum Alloy Composite Produced by Cryomilling

Author:

Contreras A.,Vogt R. G.,Oliveira D. M.,Schoenung J. M.,Gibeling J. C.

Abstract

AbstractLow cycle fatigue (LCF) properties were investigated for a novel cryomilled AA5083 aluminum composite with duplex coarse and ultrafine grain sizes and reinforced with boron carbide particulates, referred to as trimodal material. Fully reversed cyclic tests were conducted under plastic strain control at plastic strain amplitudes from 0.15 to 0.6 pct using a constant plastic strain rate in a servo-hydraulic testing system. A nonlinear elastic modulus was used to calculate the elastic contribution to the measured total strain. The LCF performance of this trimodal material is compared to previous results for unreinforced AA5083 aluminum alloy with bimodal grain size (85/15 pct CM/UM) and its coarse-grained wrought counterpart, AA5083-H131. Stress response curves for the trimodal material revealed slow hardening until failure associated with the presence of particulate reinforcements. The very small asymmetry between tension and compression stresses reflects a lack of strain localization beyond the initial cycles. The trimodal and 85/15 pct CM/UM alloys have similar and superior low cycle fatigue strength compared to AA5083-H131. From the Coffin-Manson plot, the trimodal material has a shorter fatigue life than 85/15 pct CM/UM alloy and AA5083-H131 for high plastic strain amplitudes, but nearly identical life at low amplitudes. Microcracks were observed near the dominant crack on trimodal specimen surfaces at failure. Back-scattered images revealed that particulates altered the crack propagation direction; cracks nearly always propagated around particulates.

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3