Skip to main content
Log in

Landscape of global urban environmental resistome and its association with local socioeconomic and medical status

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Antimicrobial resistance (AMR) poses a critical threat to global health and development, with environmental factors—particularly in urban areas—contributing significantly to the spread of antibiotic resistance genes (ARGs). However, most research to date has been conducted at a local level, leaving significant gaps in our understanding of the global status of antibiotic resistance in urban environments. To address this issue, we thoroughly analyzed a total of 86,213 ARGs detected within 4,728 metagenome samples, which were collected by the MetaSUB International Consortium involving diverse urban environments in 60 cities of 27 countries, utilizing a deep-learning based methodology. Our findings demonstrated the strong geographical specificity of urban environmental resistome, and their correlation with various local socioeconomic and medical conditions. We also identified distinctive evolutionary patterns of ARG-related biosynthetic gene clusters (BGCs) across different countries, and discovered that the urban environment represents a rich source of novel antibiotics. Our study provides a comprehensive overview of the global urban environmental resistome, and fills a significant gap in our knowledge of large-scale urban antibiotic resistome analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

The MetaSUB sequence data as well as the metadata can be downloaded from https://www.pangeablo.lo/. The analysis pipeline and data are available at https://github.com/Junwu302/Urban_ARGs.

References

  • Alanjary, M., Kronmiller, B., Adamek, M., Blin, K., Weber, T., Huson, D., Philmus, B., and Ziemert, N. (2017). The Antibiotic Resistant Target Seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery. Nucleic Acids Res 45, W42–W48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida, A., Mitchell, A.L., Boland, M., Forster, S.C., Gloor, G.B., Tarkowska, A., Lawley, T.D., and Finn, R.D. (2019). A new genomic blueprint of the human gut microbiota. Nature 568, 499–504.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Arango-Argoty, G., Garner, E., Pruden, A., Heath, L.S., Vikesland, P., and Zhang, L. (2018). DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 6, 23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bengtsson-Palme, J., and Larsson, D.G.J. (2015). Antibiotic resistance genes in the environment: prioritizing risks. Nat Rev Microbiol 13, 396.

    Article  CAS  PubMed  Google Scholar 

  • Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57, 289–300.

    MathSciNet  Google Scholar 

  • Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S.Y., Medema, M.H., and Weber, T. (2019). antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47, W81–W87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, J., Liu, F., Liu, S., Wang, J., Zhu, B., Shi, Y., and Gao, G.F. (2021). Identification of antibiotic resistance genes and associated mobile genetic elements in permafrost. Sci China Life Sci 64, 2210–2213.

    Article  CAS  PubMed  Google Scholar 

  • Cuadrat, R.R.C., Sorokina, M., Andrade, B.G., Goris, T., and Dávila, A.M.R. (2020). Global ocean resistome revealed: exploring antibiotic resistance gene abundance and distribution in TARA Oceans samples. Gigascience 9, giaa046.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellabaan, M.M.H., Munck, C., Porse, A., Imamovic, L., and Sommer, M.O.A. (2021). Forecasting the dissemination of antibiotic resistance genes across bacterial genomes. Nat Commun 12, 2435.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Fletcher, S. (2015). Understanding the contribution of environmental factors in the spread of antimicrobial resistance. Environ Health Prev Med 20, 243–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forslund, K., Sunagawa, S., Kultima, J.R., Mende, D.R., Arumugam, M., Typas, A., and Bork, P. (2013). Country-specific antibiotic use practices impact the human gut resistome. Genome Res 23, 1163–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautron, J.M.C., Tu Thanh, G., Barasa, V., and Voltolina, G. (2023). Using intersectionality to study gender and antimicrobial resistance in low- and middle-income countries. Health Policy Plan 38, 1017–1032.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hendriksen, R.S., Munk, P., Njage, P., van Bunnik, B., McNally, L., Lukjancenko, O., Röder, T., Nieuwenhuijse, D., Pedersen, S.K., Kjeldgaard, J., et al. (2019). Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun 10, 1124.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Hernando-Amado, S., Coque, T.M., Baquero, F., and Martónez, J.L. (2019). Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat Microbiol 4, 1432–1442.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Y., Yang, X., Qin, J., Lu, N., Cheng, G., Wu, N., Pan, Y., Li, J., Zhu, L., Wang, X., et al. (2013). Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun 4, 2151.

    Article  PubMed  ADS  Google Scholar 

  • Hyatt, D., Chen, G.L., LoCascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf 11, 119.

    Article  Google Scholar 

  • Jia, L., Xu, M., Hao, M., Liu, D., Liu, H., Zheng, X., and Chen, J. (2022). Comparison of microbial composition and diversity in the upper respiratory tract between SARS-CoV-2 and influenza virus infections. Sci China Life Sci 65, 1469–1472.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang, L., Hu, X., Xu, T., Zhang, H., Sheng, D., and Yin, D. (2013). Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China. Sci Total Environ 458–460, 267–272.

    Article  PubMed  ADS  Google Scholar 

  • Johansson, M.H.K., Bortolaia, V., Tansirichaiya, S., Aarestrup, F.M., Roberts, A.P., and Petersen, T.N. (2021). Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J Antimicrob Chemother 76, 101–109.

    Article  CAS  PubMed  Google Scholar 

  • Kautsar, S.A., Blin, K., Shaw, S., Navarro-Muñoz, J.C., Terlouw, B.R., van der Hooft, J. J.J., van Santen, J.A., Tracanna, V., Suarez Duran, H.G., Pascal Andreu, V., et al. (2020). MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res 48, D454–D458.

    PubMed  Google Scholar 

  • Klein, E.Y., Van Boeckel, T.P., Martinez, E.M., Pant, S., Gandra, S., Levin, S.A., Goossens, H., and Laxminarayan, R. (2018). Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci USA 115, E3463–E3470.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Krawczyk, P.S., Lipinski, L., and Dziembowski, A. (2018). PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res 46, e35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kristiansson, E., Fick, J., Janzon, A., Grabic, R., Rutgersson, C., Weijdegard, B., Soderstrom, H., and Larsson, D.G.J. (2011). Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS ONE 6, e17038.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Lakin, S.M., Dean, C., Noyes, N.R., Dettenwanger, A., Ross, A.S., Doster, E., Rovira, P., Abdo, Z., Jones, K.L., Ruiz, J., et al. (2017). MEGARes: an antimicrobial resistance database for high throughput sequencing. Nucleic Acids Res 45, D574–D580.

    Article  CAS  PubMed  Google Scholar 

  • Larson, E. (2007). Community factors in the development of antibiotic resistance. Annu Rev Public Health 28, 435–447.

    Article  PubMed  Google Scholar 

  • Madrigal, P., Singh, N.K., Wood, J.M., Gaudioso, E., Hernández-del-Olmo, F., Mason, C.E., Venkateswaran, K., and Beheshti, A. (2022). Machine learning algorithm to characterize antimicrobial resistance associated with the International Space Station surface microbiome. Microbiome 10, 134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munk, P., Brinch, C., Moller, F.D., Petersen, T.N., Hendriksen, R.S., Seyfarth, A.M., Kjeldgaard, J.S., Svendsen, C.A., van Bunnik, B., Berglund, F., et al. (2022). Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance. Nat Commun 13, 7251.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Murray, C.J.L., Ikuta, K.S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655.

    Article  CAS  Google Scholar 

  • Navarro-Munoz, J.C., Selem-Mojica, N., Mullowney, M.W., Kautsar, S.A., Tryon, J.H., Parkinson, E.I., De Los Santos, E.L.C., Yeong, M., Cruz-Morales, P., Abubucker, S., et al. (2020). A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol 16, 60–68.

    Article  CAS  PubMed  Google Scholar 

  • Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P.A. (2017). metaSPAdes: a new versatile metagenomic assembler. Genome Res 27, 824–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill, J. (2014). Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance. HM Government.

  • Odetokun, I.A., Akpabio, U., Alhaji, N.B., Biobaku, K.T., Oloso, N.O., Ghali-Mohammed, I., Biobaku, A.J., Adetunji, V.O., and Fasina, F.O. (2019). Knowledge of antimicrobial resistance among veterinary students and their personal antibiotic use practices: a national cross-sectional survey. Antibiotics 8, 243.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R., Simpson, G.L., Solymos, P., Stevens, M.H.H., and Wagner, H.J. (2013). Vegan: community ecology package. version 2.0–10.

  • Oldenkamp, R., Schultsz, C., Mancini, E., and Cappuccio, A. (2021). Filling the gaps in the global prevalence map of clinical antimicrobial resistance. Proc Natl Acad Sci USA 118, e2013515118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasolli, E., Asnicar, F., Manara, S., Zolfo, M., Karcher, N., Armanini, F., Beghini, F., Manghi, P., Tett, A., Ghensi, P., et al. (2019). Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasolli, E., Schiffer, L., Manghi, P., Renson, A., Obenchain, V., Truong, D.T., Beghini, F., Malik, F., Ramos, M., Dowd, J.B., et al. (2017). Accessible, curated metagenomic data through ExperimentHub. Nat Methods 14, 1023–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel, J., Fernandes, G., Mwamelo, A.J., and Sridhar, D. (2023). Health systems appraisal of the response to antimicrobial resistance in low- and middle-income countries in relation to COVID-19: application of the WHO building blocks. Glob Policy 14, 790–796.

    Article  Google Scholar 

  • Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., and Kingsford, C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14, 417–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei, R., Kim, S.C., Carlson, K.H., and Pruden, A. (2006). Effect of River Landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res 40, 2427–2435.

    Article  CAS  PubMed  Google Scholar 

  • Prieto Riquelme, M.V., Garner, E., Gupta, S., Metch, J., Zhu, N., Blair, M.F., Arango-Argoty, G., Maile-Moskowitz, A., Li, A., Flach, C.F., et al. (2022). Demonstrating a comprehensive wastewater-based surveillance approach that differentiates globally sourced resistomes. Environ Sci Technol 56, 14982–14993.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Projan, S.J., and Bradford, P.A. (2007). Late stage antibacterial drugs in the clinical pipeline. Curr Opin Microbiol 10, 441–446.

    Article  CAS  PubMed  Google Scholar 

  • Ram, B., and Kumar, M. (2020). Correlation appraisal of antibiotic resistance with fecal, metal and microplastic contamination in a tropical Indian river, lakes and sewage. NPJ Clean Water 3, 3.

    Article  CAS  Google Scholar 

  • Ruppé, E., Ghozlane, A., Tap, J., Pons, N., Alvarez, A.S., Maziers, N., Cuesta, T., Hernando-Amado, S., Clares, I., Martinez, J.L., et al. (2019). Prediction of the intestinal resistome by a three-dimensional structure-based method. Nat Microbiol 4, 112–123.

    Article  PubMed  Google Scholar 

  • Shankar, P. (2016). Book review: tackling drug-resistant infections globally. Arch Pharma Pract 7, 110–111.

    Article  Google Scholar 

  • Skariyachan, S., Mahajanakatti, A.B., Grandhi, N.J., Prasanna, A., Sen, B., Sharma, N., Vasist, K.S., and Narayanappa, R. (2015). Environmental monitoring of bacterial contamination and antibiotic resistance patterns of the fecal coliforms isolated from Cauvery River, a major drinking water source in Karnataka, India. Environ Monit Assess 187, 279.

    Article  PubMed  Google Scholar 

  • Sulis, G., Sayood, S., and Gandra, S. (2022). Antimicrobial resistance in low- and middle-income countries: current status and future directions. Expert Rev Anti Infect Ther 20, 147–160.

    Article  CAS  Google Scholar 

  • Wang, L., Jia, Y., Wu, J., Cai, Y., Guo, Q., Sun, W., Zhang, Y., Mason, C.E., and Shi, T. (2023). The effect of greenness on ESKAPE pathogen reduction and its heterogeneity across global climate zones and urbanization gradient. Urban Forry Urban Green 87, 128048.

    Article  Google Scholar 

  • Wright, G.D. (2007). The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5, 175–186.

    Article  CAS  PubMed  Google Scholar 

  • Xia, Y., Zhu, Y., Li, Q., and Lu, J. (2019). Human gut resistome can be country-specific. PeerJ 7, e6389.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, Z., Guo, Z., Qiu, C., Li, Y., Feng, X., Liu, Y., Zhang, Y., Pang, P., Wang, P., Zhou, Q., et al. (2016). Preliminary analysis showed country-specific gut resistome based on 1267 feces samples. Gene 581, 178–182.

    Article  CAS  PubMed  Google Scholar 

  • Young, S., Juhl, A., and O’Mullan, G.D. (2013). Antibiotic-resistant bacteria in the Hudson River Estuary linked to wet weather sewage contamination. J Water Health 11, 297–310.

    Article  PubMed  Google Scholar 

  • Yu, G., Smith, D.K., Zhu, H., Guan, Y., and Lam, T.T.Y. (2017). ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 8, 28–36.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Research and Development Program of China (2023YFC2706503), the National Natural Science Foundation of China (32370720), Beihang University & Capital Medical University Plan (BHME-201904), the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, ECNU, Key Laboratory of MEA, Ministry of Education, ECNU, Key Laboratory of Ecology and Energy Saving Study of Dense Habitat (Tongji University), Ministry of Education - Shanghai Tongji Urban Planning & Design Institute Co., Ltd Joint Research Project (KY-2022-LH-A03), and Shanghai Tongji Urban Planning & Design Institute Co., Ltd - China Intelligent Urbanization Co-creation Center for High Density Region Research Project (KY-2022-PT-A02). We thank all the members in the MetaSUB consortium for generating the raw data used in this study. We would like to thank the Epigenomics Core Facility at Weill Cornell Medicine, the Scientific Computing Unit (SCU), XSEDE Supercomputing Resources, as well as funding from the Irma T. Hirschl and Monique Weill-Caulier Charitable Trusts, Bert L and N Kuggie Vallee Foundation, the WorldQuant Foundation, The Pershing Square Sohn Cancer Research Alliance, the National Institutes of Health (R01AI151059), the National Science Foundation (1840275), and the Alfred P. Sloan Foundation (G-2015-13964).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongxiang Zhao, Lan Wang, Christopher E. Mason or Tieliu Shi.

Ethics declarations

The authors declare no competing financial interests relevant to the study, although Christopher E Mason is a co-Founder of Biotia.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Hu, Y., Perlin, M.H. et al. Landscape of global urban environmental resistome and its association with local socioeconomic and medical status. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-023-2504-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-023-2504-1

Navigation