Skip to main content
Log in

Regulation of insect behavior by non-coding RNAs

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The adaptation of insects to environments relies on a sophisticated set of behaviors controlled by molecular and physiological processes. Over the past several decades, accumulating studies have unveiled the roles of non-coding RNAs (ncRNAs) in regulating insect behaviors. ncRNAs assume particularly pivotal roles in the behavioral plasticity of insects by rapidly responding to environmental stimuli. ncRNAs also contribute to the maintenance of homeostasis of insects by fine-tuning the expression of target genes. However, a comprehensive review of ncRNAs’ roles in regulating insect behaviors has yet to be conducted. Here, we present the recent progress in our understanding of how ncRNAs regulate various insect behaviors, including flight and movement, social behavior, reproduction, learning and memory, and feeding. We refine the intricate mechanisms by which ncRNAs modulate the function of neural, motor, reproductive, and other physiological systems, as well as gene expression in insects like fruit flies, social insects, locusts, and mosquitos. Furthermore, we discuss potential avenues for future studies in ncRNA-mediated insect behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksoy, E., and Raikhel, A.S. (2021). Juvenile hormone regulation of microRNAs is mediated by E75 in the Dengue vector mosquito Aedes aegypti. Proc Natl Acad Sci USA 118, e2102851118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allada, R., White, N.E., So, W.V., Hall, J.C., and Rosbash, M. (1998). A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93, 791–804.

    Article  CAS  PubMed  Google Scholar 

  • Amaral, P.P., and Mattick, J.S. (2008). Noncoding RNA in development. Mamm Genome 19, 454–492.

    Article  CAS  PubMed  Google Scholar 

  • Aravin, A.A., Naumova, N.M., Tulin, A.V., Vagin, V.V., Rozovsky, Y.M., and Gvozdev, V.A. (2001). Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr Biol 11, 1017–1027.

    Article  CAS  PubMed  Google Scholar 

  • Atikukke, G., Albosta, P., Zhang, H., and Finley, R.L. (2014). A role for Drosophila Cyclin J in oogenesis revealed by genetic interactions with the piRNA pathway. Mech Dev 133, 64–76.

    Article  CAS  PubMed  Google Scholar 

  • Azlan, A., Halim, M.A., Mohamad, F., and Azzam, G. (2021). Identification and characterization of long noncoding RNAs and their association with acquisition of blood meal in Culex quinquefasciatus. Insect Sci 28, 917–928.

    Article  CAS  PubMed  Google Scholar 

  • Azzam, G., Smibert, P., Lai, E.C., and Liu, J.L. (2012). Drosophila Argonaute 1 and its miRNA biogenesis partners are required for oocyte formation and germline cell division. Dev Biol 365, 384–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function Cell 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  • Bartel, D.P., and Chen, C.Z. (2004). Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5, 396–400.

    Article  CAS  PubMed  Google Scholar 

  • Baylies, M.K., Bargiello, T.A., Jackson, F.R., and Young, M.W. (1987). Changes in abundance or structure of the per gene product can alter periodicity of the Drosophila clock. Nature 326, 390–392.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Beall, G. (1948). The fat content of a butterfly, Danaus plexippus Linn., as affected by migration. Ecology 29, 80–94.

    Article  Google Scholar 

  • Behura, S.K., and Whitfield, C.W. (2010). Correlated expression patterns of microRNA genes with age-dependent behavioural changes in honeybee. Insect Mol Biol 19, 431–439.

    Article  CAS  PubMed  Google Scholar 

  • Belavilas-Trovas, A., Gregoriou, M.E., Tastsoglou, S., Soukia, O., Giakountis, A., and Mathiopoulos, K. (2022). A species-specific lncRNA modulates the reproductive ability of the asian tiger mosquito. Front Bioeng Biotechnol 10, 885767.

    Article  PubMed  PubMed Central  Google Scholar 

  • Belavilas-Trovas, A., Tastsoglou, S., Dong, S., Kefi, M., Tavadia, M., Mathiopoulos, K. D., and Dimopoulos, G. (2023). Long non-coding RNAs regulate Aedes aegypti vector competence for Zika virus and reproduction. PLoS Pathog 19, e1011440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi, J., Zheng, Y., Wang, R.F., Ai, H., Haynes, P.R., Brownlie, J.C., Yu, X.Q., and Wang, Y.F. (2019). Wolbachia infection may improve learning and memory capacity of Drosophila by altering host gene expression through microRNA. Insect Biochem Mol Biol 106, 47–54.

    Article  CAS  PubMed  Google Scholar 

  • Brennecke, J., Aravin, A.A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., and Hannon, G.J. (2007). Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103.

    Article  CAS  PubMed  Google Scholar 

  • Brennecke, J., Malone, C.D., Aravin, A.A., Sachidanandam, R., Stark, A., and Hannon, G.J. (2008). An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322, 1387–1392.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Busto, G.U., Guven-Ozkan, T., Fulga, T.A., Van Vactor, D., and Davis, R.L. (2015). microRNAs that promote or inhibit memory formation in Drosophila melanogaster. Genetics 200, 569–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvert, W.H., Zuchowski, W., and Brower, L.P. (1983). The effect of rain, snow and freezing temperatures on overwintering monarch butterflies in Mexico. Biotropica 15, 42–47.

    Article  Google Scholar 

  • Chavda, V., Madhwani, K., and Chaurasia, B. (2022). PiWi RNA in neurodevelopment and neurodegenerative disorders. Curr Mol Pharmacol 15, 517–531.

    Article  CAS  PubMed  Google Scholar 

  • Chen, D., Hou, L., Wei, J., Guo, S., Cui, W., Yang, P., Kang, L., and Wang, X. (2022). Aggregation pheromone 4-vinylanisole promotes the synchrony of sexual maturation in female locusts. eLife 11, e74581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J.F., Mandel, E.M., Thomson, J.M., Wu, Q., Callis, T.E., Hammond, S.M., Conlon, F.L., and Wang, D.Z. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38, 228–233.

    Article  CAS  PubMed  Google Scholar 

  • Chen, K., Chen, S., Xu, J., Yu, Y., Liu, Z., Tan, A., and Huang, Y. (2019). Maelstrom regulates spermatogenesis of the silkworm, Bombyx mori. Insect Biochem Mol Biol 109, 43–51.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Q., He, J., Ma, C., Yu, D., and Kang, L. (2015). Syntaxin 1A modulates the sexual maturity rate and progeny egg size related to phase changes in locusts. Insect Biochem Mol Biol 56, 1–8.

    Article  PubMed  Google Scholar 

  • Chen, S., Liu, Y., Yang, X., Liu, Z., Luo, X., Xu, J., and Huang, Y. (2020). Dysfunction of dimorphic sperm impairs male fertility in the silkworm. Cell Discov 6, 60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, W., Liu, Z., Li, T., Zhang, R., Xue, Y., Zhong, Y., Bai, W., Zhou, D., and Zhao, Z. (2014a). Regulation of Drosophila circadian rhythms by miRNA let-7 is mediated by a regulatory cycle. Nat Commun 5, 5549.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Chen, X., and Fu, J. (2021). The microRNA miR-14 regulates egg-laying by targeting EcR in honeybees (Apis mellifera). Insects 12, 351.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Ma, C., Chen, C., Lu, Q., Shi, W., Liu, Z., Wang, H., and Guo, H. (2017). Integration of lncRNA-miRNA-mRNA reveals novel insights into oviposition regulation in honey bees. PeerJ 5, e3881.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, X., and Rosbash, M. (2016). mir-276a strengthens Drosophila circadian rhythms by regulating timeless expression. Proc Natl Acad Sci USA 113, E2965–E2972.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Chen, X., Wang, D., and An, J. (2023). Circular RNA ame_circ_2015 function as microRNA sponges in regulating egg-laying of honeybees (Apis mellifera). Life 13, 161.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Chen, Y.W., Song, S., Weng, R., Verma, P., Kugler, J.M., Buescher, M., Rouam, S., and Cohen, S.M. (2014b). Systematic study of Drosophila microRNA functions using a collection of targeted knockout mutations. Dev Cell 31, 784–800.

    Article  CAS  PubMed  Google Scholar 

  • Collins, D.H., Mohorianu, I., Beckers, M., Moulton, V., Dalmay, T., and Bourke, A.F.G. (2017). MicroRNAs associated with caste determination and differentiation in a primitively eusocial insect. Sci Rep 7, 45674.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Couvillion, M.T., Lee, S.R., Hogstad, B., Malone, C.D., Tonkin, L.A., Sachidanandam, R., Hannon, G.J., and Collins, K. (2009). Sequence, biogenesis, and function of diverse small RNA classes bound to the Piwi family proteins of Tetrahymena thermophila. Genes Dev 23, 2016–2032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cristino, A.S., Barchuk, A.R., Freitas, F.C.P., Narayanan, R.K., Biergans, S.D., Zhao, Z., Simoes, Z.L.P., Reinhard, J., and Claudianos, C. (2014). Neuroligin-associated microRNA-932 targets actin and regulates memory in the honeybee. Nat Commun 5, 5529.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Cruz, C., Tayler, A., and Whyard, S. (2018). RNA interference-mediated knockdown of male fertility genes in the queensland fruit fly Bactrocera tryoni (Diptera: Tephritidae). Insects 9, 96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dantzer, B., Newman, A.E.M., Boonstra, R., Palme, R., Boutin, S., Humphries, M.M., and McAdam, A.G. (2013). Density triggers maternal hormones that increase adaptive offspring growth in a wild mammal. Science 340, 1215–1217.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Deveson, I.W., Hardwick, S.A., Mercer, T.R., and Mattick, J.S. (2017). The dimensions, dynamics, and relevance of the mammalian noncoding transcriptome. Trends Genet 33, 464–478.

    Article  CAS  PubMed  Google Scholar 

  • Dinger, M.E., Amaral, P.P., Mercer, T.R., and Mattick, J.S. (2009). Pervasive transcription of the eukaryotic genome: functional indices and conceptual implications. Brief Funct Genomics Proteomics 8, 407–423.

    Article  CAS  Google Scholar 

  • Dong, Y.C., Wang, Z.J., Chen, Z.Z., Clarke, A.R., and Niu, C.Y. (2016). Bactrocera dorsalis male sterilization by targeted RNA interference of spermatogenesis: empowering sterile insect technique programs. Sci Rep 6, 35750.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Du, B., Ding, D., Ma, C., Guo, W., and Kang, L. (2022). Locust density shapes energy metabolism and oxidative stress resulting in divergence of flight traits. Proc Natl Acad Sci USA 119, e2115753118.

    Article  CAS  PubMed  Google Scholar 

  • Feng, W., Huang, J., Zhang, Z., Nie, H., Lin, Y., Li, Z., and Su, S. (2022). Understanding of waggle dance in the honey bee (Apis mellifera) from the perspective oflong non-coding RNA. Insects 13, 111.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fricke, C., Green, D., Smith, D., Dalmay, T., and Chapman, T. (2014). MicroRNAs influence reproductive responses by females to male sex peptide in Drosophila melanogaster. Genetics 198, 1603–1619.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu, X., Li, T., Chen, J., Dong, Y., Qiu, J., Kang, K., and Zhang, W. (2015). Functional screen for microRNAs of Nilaparvata lugens reveals that targeting of glutamine synthase by miR-4868b regulates fecundity. J Insect Physiol 83, 22–29.

    Article  CAS  PubMed  Google Scholar 

  • Gabrieli, P., Scolari, F., Di Cosimo, A., Savini, G., Fumagalli, M., Gomulski, L.M., Malacrida, A.R., and Gasperi, G. (2016). Sperm-less males modulate female behaviour in Ceratitis capitata (Diptera: Tephritidae). Insect Biochem Mol Biol 79, 13–26.

    Article  CAS  PubMed  Google Scholar 

  • Garaulet, D.L., Castellanos, M.C., Bejarano, F., Sanfilippo, P., Tyler, D.M., Allan, D.W., Sánchez-Herrero, E., and Lai, E.C. (2014). Homeotic function of Drosophila bithorax-complex miRNAs mediates fertility by restricting multiple Hox genes and TALE cofactors in the CNS. Dev Cell 29, 635–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garaulet, D.L., Moro, A., and Lai, E.C. (2021). A double-negative gene regulatory circuit underlies the virgin behavioral state. Cell Rep 36, 109335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garaulet, D.L., Zhang, B., Wei, L., Li, E., and Lai, E.C. (2020). miRNAs and neural alternative polyadenylation specify the virgin behavioral state. Dev Cell 54, 410–423.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelperin, A. (1971). Regulation of feeding. Annu Rev Entomol 16, 365–378.

    Article  Google Scholar 

  • Gil, N., and Ulitsky, I. (2020). Regulation ofgene expression by cis-acting long non-coding RNAs. Nat Rev Genet 21, 102–117.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, J., Qi, H., Liu, N., and Lin, H. (2015). Piwi is a key regulatorofbothsomatic and germline stem cells in the Drosophila testis. Cell Rep 12, 150–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez, L.E., Tang, X., and Lin, H. (2021). Maternal Piwi regulates primordial germ cell development to ensure the fertility of female progeny in Drosophila. Genetics 219, iyab091.

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenberg, J.K., Xia, J., Zhou, X., Thatcher, S.R., Gu, X., Ament, S.A., Newman, T.C., Green, P.J., Zhang, W., Robinson, G.E., et al. (2012). Behavioral plasticity in honey bees is associated with differences in brain microRNA transcriptome. Genes Brain Behav 11, 660–670.

    Article  CAS  PubMed  Google Scholar 

  • Guo, W., Wang, X., Ma, Z., Xue, L., Han, J., Yu, D., and Kang, L. (2011). CSP and takeout genes modulate the switch between attraction and repulsion during behavioral phase change in the migratory locust. PLoS Genet 7, e1001291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, X., Ma, Z., Du, B., Li, T., Li, W., Xu, L., He, J., and Kang, L. (2018). Dop1 enhances conspecific olfactory attraction by inhibiting miR-9a maturation in locusts. Nat Commun 9, 1193.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • He, J., Chen, Q., Wei, Y., Jiang, F., Yang, M., Hao, S., Guo, X., Chen, D., and Kang, L. (2016). MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts. Proc Natl Acad Sci USA 113, 584–589.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • He, J., Zhu, Y., Wang, B., Yang, P., Guo, W., Liang, B., Jiang, F., Wang, H., Wei, Y., and Kang, L. (2022). piRNA-guided intron removal from pre-mRNAs regulates density-dependent reproductive strategy. Cell Rep 39, 110593.

    Article  CAS  PubMed  Google Scholar 

  • Helfrich-Förster, C., Yoshii, T., Wülbeck, C., Grieshaber, E., Rieger, D., Bachleitner, W., Cusumano, P., and Rouyer, F. (2007). The lateral and dorsal neurons ofDrosophila melanogaster: new insights about their morphology and function. Cold Spring Harb Symp Quant Biol 72, 517–525.

    Article  PubMed  Google Scholar 

  • Herman, W.S., and Tatar, M. (2001). Juvenile hormone regulation of longevity in the migratory monarch butterfly. Proc R Soc Lond B 268, 2509–2514.

    Article  CAS  Google Scholar 

  • Hollis, K., and Guillette, L. (2011). Associative learning in insects: evolutionary models, mushroom bodies, and a neuroscientific conundrum. Comp Cogn Behav Rev 6, 25–46.

    Article  Google Scholar 

  • Hu, Y., Wang, X., Xu, Y., Yang, H., Tong, Z., Tian, R., Xu, S., Yu, L., Guo, Y., Shi, P., et al. (2023). Molecular mechanisms of adaptive evolution in wild animals and plants. Sci China Life Sci 66, 453–495.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iftikhar, H., Johnson, N.L., Marlatt, M.L., and Carney, G.E. (2019). The role of miRNAs in Drosophila melanogaster male courtship behavior. Genetics 211, 925–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Issa, A.R., Picao-Osorio, J., Rito, N., Chiappe, M.E., and Alonso, C.R. (2019). A single microRNA-Hox gene module controls equivalent movements in biomechanically distinct forms of Drosophila. Curr Biol 29, 2665–2675.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaubert-Possamai, S., Rispe, C., Tanguy, S., Gordon, K., Walsh, T., Edwards, O., and Tagu, D. (2010). Expansion of the miRNA pathway in the hemipteran insect Acyrthosiphon pisum. Mol Biol Evol 27, 979–987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenny, A., Hachet, O., Zavorszky, P., Cyrklaff, A., Weston, M.D.J., Johnston, D.S., Erdélyi, M., and Ephrussi, A. (2006). A translation-independent role of oskar RNA in early Drosophila oogenesis. Development 133, 2827–2833.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, C.H., Elliott, J.A., and Foster, R. (2003). Entrainment of circadian programs. Chronobiol Int 20, 741–774.

    Article  PubMed  Google Scholar 

  • Kadener, S., Menet, J.S., Sugino, K., Horwich, M.D., Weissbein, U., Nawathean, P., Vagin, V.V., Zamore, P.D., Nelson, S.B., and Rosbash, M. (2009). A role for microRNAs in the Drosophila circadian clock. Genes Dev 23, 2179–2191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanke, M., Jambor, H., Reich, J., Marches, B., Gstir, R., Ryu, Y.H., Ephrussi, A., and Macdonald, P.M. (2015). oskar RNA plays multiple noncoding roles to support oogenesis and maintain integrity of the germline/soma distinction. RNA 21, 1096–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karres, J.S., Hilgers, V., Carrera, I., Treisman, J., and Cohen, S.M. (2007). The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell 131, 136–145.

    Article  CAS  PubMed  Google Scholar 

  • Kawamura, Y., Saito, K., Kin, T., Ono, Y., Asai, K., Sunohara, T., Okada, T.N., Siomi, M.C., and Siomi, H. (2008). Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature 453, 793–797.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Kelly, S.A., Panhuis, T.M., and Stoehr, A.M. (2012). Phenotypic plasticity: molecular mechanisms and adaptive significance. Compr Physiol 2, 1417–1439.

    Article  PubMed  Google Scholar 

  • Kiya, T., Ugajin, A., Kunieda, T., and Kubo, T. (2012). Identification of kakusei, a nuclear non-coding RNA, as an immediate early gene from the honeybee, and its application for neuroethological study. Int J Mol Sci 13, 15496–15509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klann, M., Issa, A.R., Pinho, S., and Alonso, C.R. (2021). MicroRNA-dependent control of sensory neuron function regulates posture behavior in Drosophila. J Neurosci 41, 8297–8308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knipling, E.F. (1959). Sterile-male method of population control. Science 130, 902–904.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Kotov, A.A., Adashev, V.E., Godneeva, B.K., Ninova, M., Shatskikh, A.S., Bazylev, S.S., Aravin, A.A., and Olenina, L.V. (2019). piRNA silencing contributes to interspecies hybrid sterility and reproductive isolation in Drosophila melanogaster. Nucleic Acids Res 47, 4255–4271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, C., Vagin, V.V., Lee, S., Xu, J., Ma, S., Xi, H., Seitz, H., Horwich, M.D., Syrzycka, M., Honda, B.M., et al. (2009). Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 137, 509–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., Liu, F., Li, W., Li, Z., Pan, J., Yan, L., Zhang, S., Huang, Z.Y., and Su, S. (2012a). Differences in microRNAs and their expressions between foraging and dancing honey bees, Apis mellifera L. J Insect Physiol 58, 1438–1443.

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Wen, S., Guo, X., Bai, B., Gong, Z., Liu, X., Wang, Y., Zhou, Y., Chen, X., Liu, L., et al. (2012b). The novel long non-coding RNA CRG regulates Drosophila locomotor behavior. Nucleic Acids Res 40, 11714–11727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, T., Chen, B., Yang, P., Wang, D., Du, B., and Kang, L. (2020). Long non-coding RNA derived from lncRNA-mRNA co-expression networks modulates the locust phase change. Genomics Proteomics Bioinf 18, 664–678.

    Article  CAS  Google Scholar 

  • Li, W., Cressy, M., Qin, H., Fulga, T., Van Vactor, D., and Dubnau, J. (2013a). MicroRNA-276a functions in ellipsoid body and mushroom body neurons for naive and conditioned olfactory avoidance in Drosophila. J Neurosci 33, 5821–5833.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Prazak, L., Chatterjee, N., Grüninger, S., Krug, L., Theodorou, D., and Dubnau, J. (2013b). Activation of transposable elements during aging and neuronal decline in Drosophila. Nat Neurosci 16, 529–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W., Wei, D., Han, H., Song, Y., Wang, Y., Xu, H., Smagghe, G., and Wang, J. (2021). lnc94638 is a testis-specific long non-coding RNA involved in spermatozoa formation in Zeugodacus cucurbitae (Coquillett). Insect Mol Biol 30, 605–614.

    Article  CAS  PubMed  Google Scholar 

  • Li, X.Y., Mei, J., Ge, C.T., Liu, X.L., and Gui, J.F. (2022). Sex determination mechanisms and sex control approaches in aquaculture animals. Sci China Life Sci 65, 1091–1122.

    Article  PubMed  ADS  Google Scholar 

  • Li, Z., You, L., Yan, D., James, A.A., Huang, Y., and Tan, A. (2018). Bombyx mori histone methyltransferase BmAsh2 is essential for silkworm piRNA-mediated sex determination. PLoS Genet 14, e1007245.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, F., Peng, W., Li, Z., Li, W., Li, L., Pan, J., Zhang, S., Miao, Y., Chen, S., and Su, S. (2012a). Next-generation small RNA sequencing for microRNAs profiling in Apis mellifera: comparison between nurses and foragers. Insect Mol Biol 21, 297–303.

    Article  CAS  PubMed  Google Scholar 

  • Liu, F., Shi, T., Qi, L., Su, X., Wang, D., Dong, J., and Huang, Z.Y. (2019). lncRNA profile of Apis mellifera and its possible role in behavioural transition from nurses to foragers. BMC Genomics 20, 393.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, F., Shi, T., Yin, W., Su, X., Qi, L., Huang, Z.Y., Zhang, S., and Yu, L. (2017). The microRNA ame-miR-279a regulates sucrose responsiveness of forager honey bees (Apis mellifera). Insect Biochem Mol Biol 90, 34–42.

    Article  CAS  PubMed  Google Scholar 

  • Liu, L., Yan, F.M., Zhao, C.C., Su, L.J., Huang, Q.Y., and Tang, Q.B. (2022). microRNAs shape social immunity: a potential target for biological control of the termite Reticulitermes chinensis. J Pest Sci 96, 265–279.

    Article  Google Scholar 

  • Liu, N., Landreh, M., Cao, K., Abe, M., Hendriks, G.J., Kennerdell, J.R., Zhu, Y., Wang, L.S., and Bonini, N.M. (2012b). The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature 482, 519–523.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Liu, S., Lucas, K.J., Roy, S., Ha, J., and Raikhel, A.S. (2014). Mosquito-specific microRNA-1174 targets serine hydroxymethyltransferase to control key functions in the gut. Proc Natl Acad Sci USA 111, 14460–14465.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Liufu, Z., Zhao, Y., Guo, L., Miao, G., Xiao, J., Lyu, Y., Chen, Y., Shi, S., Tang, T., and Wu, C.I. (2017). Redundant and incoherent regulations of multiple phenotypes suggest microRNAs’ role in stability control. Genome Res 27, 1665–1673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo Piccolo, L. (2018). Drosophila as a model to gain insight into the role of lncRNAs in neurological disorders. In: Yamaguchi, M., ed. Drosophila Models for Human Diseases. Advances in Experimental Medicine and Biology. Singapore: Springer. 119–146.

    Chapter  Google Scholar 

  • Lu, H.L., Tanguy, S., Rispe, C., Gauthier, J.P., Walsh, T., Gordon, K., Edwards, O., Tagu, D., Chang, C.C., and Jaubert-Possamai, S. (2011). Expansion of genes encoding piRNA-associated argonaute proteins in the pea aphid: diversification of expression profiles in different plastic morphs. PLoS ONE 6, e28051.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Lucas, K.J., Roy, S., Ha, J., Gervaise, A.L., Kokoza, V.A., and Raikhel, A.S. (2015a). MicroRNA-8 targets the Wingless signaling pathway in the female mosquito fat body to regulate reproductive processes. Proc Natl Acad Sci USA 112, 1440–1445.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Lucas, K.J., Zhao, B., Roy, S., Gervaise, A.L., and Raikhel, A.S. (2015b). Mosquito-specific microRNA-1890 targets the juvenile hormone-regulated serine protease JHA15 in the female mosquito gut. RNA Biol 12, 1383–1390.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo, W., and Sehgal, A. (2012). Regulation of circadian behavioral output via a microRNA-JAK/STAT circuit. Cell 148, 765–779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, Z., Guo, W., Guo, X., Wang, X., and Kang, L. (2011). Modulation of behavioral phase changes of the migratory locust by the catecholamine metabolic pathway. Proc Natl Acad Sci USA 108, 3882–3887.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Macedo, L.M.F., Nunes, F.M.F., Freitas, F.C.P., Pires, C.V., Tanaka, E.D., Martins, J.R., Piulachs, M., Cristino, A.S., Pinheiro, D.G., and Simões, Z.L.P. (2016). MicroRNA signatures characterizing caste-independent ovarian activity in queen and worker honeybees (Apis mellifera L.). Insect Mol Biol 25, 216–226.

    Article  CAS  PubMed  Google Scholar 

  • Maeda, R.K., Sitnik, J.L., Frei, Y., Prince, E., Gligorov, D., Wolfner, M.F., and Karch, F. (2018). The lncRNA male-specific abdominal plays a critical role in Drosophila accessory gland development and male fertility. PLoS Genet 14, e1007519.

    Article  PubMed  PubMed Central  Google Scholar 

  • Menzel, R. (1999). Memory dynamics in the honeybee. J Comp Physiol A 185, 323–340.

    Article  ADS  Google Scholar 

  • Nguyen, H.T., and Frasch, M. (2006). MicroRNAs in muscle differentiation: lessons from Drosophila and beyond. Curr Opin Genet Dev 16, 533–539.

    Article  CAS  PubMed  Google Scholar 

  • Patalano, S., Vlasova, A., Wyatt, C., Ewels, P., Camara, F., Ferreira, P.G., Asher, C.L., Jurkowski, T.P., Segonds-Pichon, A., Bachman, M., et al. (2015). Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies. Proc Natl Acad Sci USA 112, 13970–13975.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Patop, I.L., Wiist, S., and Kadener, S. (2019). Past, present, and future of circRNAs. EMBO J 38, e100836.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfeiffenberger, C., Lear, B.C., Keegan, K.P., and Allada, R. (2010). Locomotor activity level monitoring using the Drosophila activity monitoring (DAM) system. Cold Spring Harb Protoc 2010, pdb.prot5518.

    Article  PubMed  Google Scholar 

  • Picao-Osorio, J., Johnston, J., Landgraf, M., Berni, J., and Alonso, C.R. (2015). MicroRNA-encoded behavior in Drosophila. Science 350, 815–820.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Reppert, S.M., Gegear, R.J., and Merlin, C. (2010). Navigational mechanisms of migrating monarch butterflies. Trends Neuroscis 33, 399–406.

    Article  CAS  Google Scholar 

  • Robinson, G.E. (1992). Regulation of division of labor in insect societies. Annu Rev Entomol 37, 637–665.

    Article  CAS  PubMed  Google Scholar 

  • Rutila, J.E., Suri, V., Le, M., So, W.V., Rosbash, M., and Hall, J.C. (1998). CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophilaperiod and timeless. Cell 93, 805–814.

    Article  CAS  PubMed  Google Scholar 

  • Saito, K., Inagaki, S., Mituyama, T., Kawamura, Y., Ono, Y., Sakota, E., Kotani, H., Asai, K., Siomi, H., and Siomi, M.C. (2009). A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature 461, 1296–1299.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Sato, K., Nishida, K.M., Shibuya, A., Siomi, M.C., and Siomi, H. (2011). Maelstrom coordinates microtubule organization during Drosophila oogenesis through interaction with components of the MTOC. Gene Dev 25, 2361–2373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt, A., Palumbo, G., Bozzetti, M.P., Tritto, P., Pimpinelli, S., and Schäfer, U. (1999). Genetic and molecular characterization of sting, a gene involved in crystal formation and meiotic drive in the male germ line of Drosophila melanogaster. Genetics 151, 749–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schurko, A.M., Logsdon John M. J., and Eads, B.D. (2009). Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution. BMC Evol Biol 9, 78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shafer, O.T., and Keene, A.C. (2021). The regulation of Drosophila sleep. Curr Biol 31, R38–R49.

    Article  CAS  PubMed  Google Scholar 

  • Shao, T.L., Ting, R.T., and Lee, M.C. (2022). Identification of Lsd1-interacting non-coding RNAs as regulators of fly oogenesis. Cell Rep 40, 111294.

    Article  CAS  PubMed  Google Scholar 

  • Shields, E.J., Sheng, L., Weiner, A.K., Garcia, B.A., and Bonasio, R. (2018). High-quality genome assemblies reveal long non-coding RNAs expressed in ant brains. Cell Rep 23, 3078–3090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shields, E.J., Sorida, M., Sheng, L., Sieriebriennikov, B., Ding, L., and Bonasio, R. (2021). Genome annotation with long RNA reads reveals new patterns of gene expression and improves single-cell analyses in an ant brain. BMC Biol 19, 254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinervo, B., Svensson, E., and Comendant, T. (2000). Density cycles and an offspring quantity and quality game driven by natural selection. Nature 406, 985–988.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Sirot, L.K., LaFlamme, B.A., Sitnik, J.L., Rubinstein, C.D., Avila, F.W., Chow, C.Y., and Wolfner, M.F. (2009). Molecular social interactions: Drosophila melanogaster seminal fluid proteins as a case study. Adv Genet 68, 23–56.

    Article  CAS  PubMed  Google Scholar 

  • Sohail, S., Tariq, K., Zheng, W., Ali, M.W., Peng, W., Raza, M.F., and Zhang, H. (2019). RNAi-mediated knockdown of Tsskl and Tektinl genes impair male fertility in Bactrocera dorsalis. Insects 10, 164.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, J., Guo, W., Jiang, F., Kang, L., and Zhou, S. (2013). Argonaute 1 is indispensable for juvenile hormone mediated oogenesis in the migratory locust, Locusta migratoria. Insect Biochem Mol Biol 43, 879–887.

    Article  CAS  PubMed  Google Scholar 

  • Soshnev, A.A., Ishimoto, H., McAllister, B.F., Li, X., Wehling, M.D., Kitamoto, T., and Geyer, P.K. (2011). A conserved long noncoding RNA affects sleep behavior in Drosophila. Genetics 189, 455–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadano, H., Yamazaki, Y., Takeuchi, H., and Kubo, T. (2009). Age- and division-of-labour-dependent differential expression of a novel non-coding RNA, Nb-1, in the brain of worker honeybees, Apis mellifera L. Insect Mol Biol 18, 715–726.

    Article  CAS  PubMed  Google Scholar 

  • Thailayil, J., Magnusson, K., Godfray, H.C.J., Crisanti, A., and Catteruccia, F. (2011). Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae. Proc Natl Acad Sci USA 108, 13677–13681.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Thomson, T., and Lin, H. (2009). The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol 25, 355–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda, M., Sato, T., Ohkawa, Y., and Inoue, Y.H. (2018). Identification of miR-305, a microRNA that promotes aging, and its target mRNAs in Drosophila. Genes Cells 23, 80–93.

    Article  CAS  PubMed  Google Scholar 

  • Varghese, J., Lim, S.F., and Cohen, S.M. (2010). Drosophila miR-14 regulates insulin production and metabolism through its target, sugarbabe. Genes Dev 24, 2748–2753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vodala, S., Pescatore, S., Rodriguez, J., Buescher, M., Chen, Y.W., Weng, R., Cohen, S. M., and Rosbash, M. (2012). The oscillating miRNA 959–964 cluster impacts Drosophila feeding time and other circadian outputs. Cell Metab 16, 601–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., Feng, T., Wan, Q., Kong, Y., and Yuan, L. (2014a). miR-124 controls Drosophila behavior and is required for neural development. Intl J Devlp Neurosci 38, 105–112.

    Article  CAS  Google Scholar 

  • Wang, H., Jiang, F., Liu, X., Liu, Q., Fu, Y., Li, R., Hou, L., Zhang, J., He, J., and Kang, L. (2022). Piwi/piRNAs control food intake by promoting neuropeptide F expression in locusts. EMBO Rep 23, e50851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Fang, X., Yang, P., Jiang, X., Jiang, F., Zhao, D., Li, B., Cui, F., Wei, J., Ma, C., et al. (2014b). The locust genome provides insight into swarm formation and long-distance flight. Nat Commun 5, 2957.

    Article  PubMed  ADS  Google Scholar 

  • Wang, X., and Kang, L. (2014). Molecular mechanisms of phase change in locusts. Annu Rev Entomol 59, 225–244.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Ramat, A., Simonelig, M., and Liu, M.F. (2023). Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat Rev Mol Cell Biol 24, 123–141.

    Article  CAS  PubMed  Google Scholar 

  • Wei, Y., Chen, S., Yang, P., Ma, Z., and Kang, L. (2009). Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust. Genome Biol 10, R6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weitekamp, C.A., Libbrecht, R., and Keller, L. (2017). Genetics and evolution of social behavior in insects. Annu Rev Genet 51, 219–239.

    Article  CAS  PubMed  Google Scholar 

  • Wen, K., Yang, L., Xiong, T., Di, C., Ma, D., Wu, M., Xue, Z., Zhang, X., Long, L., Zhang, W., et al. (2016). Critical roles of long noncoding RNAs in Drosophila spermatogenesis. Genome Res 26, 1233–1244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng, R., Chin, J.S., Yew, J.Y., Bushati, N., and Cohen, S.M. (2013). miR-124 controls male reproductive success in Drosophila. eLife 2, e00640.

    Article  PubMed  PubMed Central  Google Scholar 

  • Whyard, S., Erdelyan, C., Partridge, A.L., Singh, A.D., Beebe, N.W., and Capina, R. (2015). Silencing the buzz: a new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs. Parasit Vectors 8, 96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wynant, N., Santos, D., Subramanyam, S.H., Verlinden, H., and Vanden Broeck, J. (2015). Drosha, Dicer-1 and Argonaute-1 in the desert locust: Phylogenetic analyses, transcript profiling and regulation during phase transition and feeding. J Insect Physiol 75, 20–29.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, H., Yuan, Z., Guo, D., Hou, B., Yin, C., Zhang, W., and Li, F. (2015). Genome-wide identification of long noncoding RNA genes and their potential association with fecundity and virulence in rice brown planthopper, Nilaparvata lugens. BMC Genomics 16, 749.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie, Y.F., Shang, F., Ding, B.Y., Wu, Y.B., Niu, J.Z., Wei, D., Dou, W., Christiaens, O., Smagghe, G., and Wang, J.J. (2019). Tudor knockdown disrupts ovary development in Bactrocera dorsalis. Insect Mol Biol 28, 136–144.

    Article  CAS  PubMed  Google Scholar 

  • Xu, B., Zhu, Y., Cao, C., Chen, H., Jin, Q., Li, G., Ma, J., Yang, S.L., Zhao, J., Zhu, J., et al. (2022). Recent advances in RNA structurome. Sci China Life Sci 65, 1285–1324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, P., Vernooy, S.Y., Guo, M., and Hay, B.A. (2003). The Drosophila microRNA mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13, 790–795.

    Article  CAS  PubMed  Google Scholar 

  • Yang, M., Du, B., Xu, L., Wang, H., Wang, Y., Lin, K., He, G., and Kang, L. (2023). Glutamate-GABA imbalance mediated by miR-8-5p and its STTM regulates phase-related behavior of locusts. Proc Natl Acad Sci USA 120, e2215660120.

    Article  CAS  PubMed  Google Scholar 

  • Yang, M., Wei, Y., Jiang, F., Wang, Y., Guo, X., He, J., and Kang, L. (2014). MicroRNA-133 inhibits behavioral aggregation by controlling dopamine synthesis in locusts. PLoS Genet 10, e1004206.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, R., Zhang, Q., Fan, J., Yue, Y., Chen, E., Yuan, G., Dou, W., and Wang, J. (2021). RNA interference of Argonaute-1 delays ovarian development in the oriental fruit fly, Bactrocera dorsalis (Hendel). Pest Manage Sci 77, 3921–3933.

    Article  CAS  Google Scholar 

  • Yang, X., Chen, D., Zheng, S., Yi, M., Liu, Z., Liu, Y., Yang, D., Liu, Y., Tang, L., Zhu, C., et al. (2022). BmHen1 is essential for eupyrene sperm development in Bombyx mori but PIWI proteins are not. Insect Biochem Mol Biol 151, 103874.

    Article  CAS  PubMed  Google Scholar 

  • Zhan, S., Merlin, C., Boore, J.L., and Reppert, S.M. (2011). The monarch butterfly genome yields insights into long-distance migration. Cell 147, 1171–1185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, C., and Zhang, B. (2023). RNA therapeutics: updates and future potential. Sci China Life Sci 66, 12–30.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., Zhang, B., Wang, X., Song, J., Tong, M., Dong, Z., Xu, J., Liu, M., Jiang, Y., Wang, N., et al. (2023). LncRNA CFAR promotes cardiac fibrosis via the miR-449a-5p/LOXL3/mTOR axis. Sci China Life Sci 66, 783–799.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Zhang, S., An, S., Hoover, K., Li, Z., Li, X., Liu, X., Shen, Z., Fang, H., Ros, V.I.D., Zhang, Q., et al. (2018). Host miRNAs are involved in hormonal regulation of HaSNPV-triggered climbing behaviour in Helicoverpa armigera. Mol Ecol 27, 459–475.

    Article  PubMed  Google Scholar 

  • Zhang, X., Xu, Y., Chen, B., and Kang, L. (2020). Long noncoding RNA PAHAL modulates locust behavioural plasticity through the feedback regulation of dopamine biosynthesis. PLoS Genet 16, e1008771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Zhu, Y., Chen, B., and Kang, L. (2022). A Gypsy element contributes to the nuclear retention and transcriptional regulation of the resident lncRNA in locusts. RNA Biol 19, 206–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., and Emery, P. (2013). GW182 controls Drosophila circadian behavior and PDF-receptor signaling. Neuron 78, 152–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Wang, X., and Kang, L. (2011). A k-mer scheme to predict piRNAs and characterize locust piRNAs. Bioinformatics 27, 771–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, L., Guo, W., Jiang, F., He, J., Liu, H., Song, J., Yu, D., and Kang, L. (2021). Phase-related differences in egg production of the migratory locust regulated by differential oosorption through microRNA-34 targeting activinβ. PLoS Genet 17, e1009174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, H., Gegear, R.J., Casselman, A., Kanginakudru, S., and Reppert, S.M. (2009). Defining behavioral and molecular differences between summer and migratory monarch butterflies. BMC Biol 7, 14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, K., Liu, M., Fu, Z., Zhou, Z., Kong, Y., Liang, H., Lin, Z., Luo, J., Zheng, H., Wan, P., et al. (2017). Plant microRNAs in larval food regulate honeybee caste development. PLoS Genet 13, e1006946.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, Z., Tan, Y., Xiao, S., Guan, Z., Zhao, W., Dai, Z., Liu, G., and Zhang, Z. (2021). Solitary living brings a decreased weight and an increased agility to the domestic silkworm, Bombyx mori. Insects 12, 809.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (32088102, 32270523), the National Key Research and Development Program of China (2022YFD1400800, 2022YFD1400500), and Chinese Academy of Sciences (QYZDY-SSW-SMC009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Kang.

Ethics declarations

The author(s) declare that they have no conflict of Interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Kang, L. Regulation of insect behavior by non-coding RNAs. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-023-2482-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-023-2482-2

Navigation