Optimization-based analysis of integrated lignocellulosic biorefineries in Spain focusing on building blocks

Author:

Rodriguez-Fernandez Silvia,Díaz Ismael,González-Miquel María,González Emilio J.,Rodriguez ManuelORCID

Abstract

AbstractSpain, in the framework of the European Green Deal, has set ambitious climate and energy goals for 2030. Lignocellulosic biorefineries can make a strong contribution to these goals; however, advanced biofuels generally cannot be produced in a profitable way compared to fossil and first-generation fuels. To address this problem, the efficient production of a wide range of bioproducts, not only biofuels and bioenergy, may be the solution. Therefore, a systematic evaluation of the near-term economic potential bio-building blocks (xylitol, sorbitol, succinic, glutamic, glucaric, levulinic, lactic, and itaconic acids) is presented. Many possible combinations of feedstock and conversion technologies can be considered feasible pathways to manufacture advanced biofuels and bio-based building blocks. To map the optimal groups of technologies in the framework of Spain’s biorefineries, we apply a methodology based on a network optimization approach that combines minimum cost and energy criteria together with feedstock availability and demand constraints. The feedstocks analyzed are pine and eucalyptus residues and olive tree pruning wastes, being three largely available agroforesty residues in Spain. The results show that building blocks show good economic and energy performance compared to advanced transportation biofuels, and although their demand is much lower, they should be considered to improve the profitability of biorefineries. Secondly, advanced gasoline, bioethanol, hydrogen, and building blocks demands can be satisfied with pine, eucalyptus, and olive residues available in Spain. Finally, lactic acid production is profitable, but the remaining routes do not reach the break-even point, suggesting that further research is still needed.

Funder

Universidad Politécnica de Madrid

Publisher

Springer Science and Business Media LLC

Reference88 articles.

1. FitzPatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101:8915–8922. https://doi.org/10.1016/j.biortech.2010.06.125

2. MITECO (2020) Plan Nacional Integrado de Energía y Clima 2021–2030. Minist para la Transic Ecológica y el Reto Demográfico, Gob España 25

3. Paris Agreement | Climate Action. https://ec.europa.eu/clima/policies/international/negotiations/paris_en. Accessed 12 Jul 2021

4. A Clean Planet for all COM (2018) 773 final. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52018DC0773. Accessed 12 Jul 2021

5. Tavares CS, Martins A, Miguel MG, et al (2020) Bioproducts from forest biomass II. Bioactive compounds from the steam-distillation by-products of Cupressus lusitanica Mill. and Cistus ladanifer L. wastes. Ind Crops Prod 158:. https://doi.org/10.1016/j.indcrop.2020.112991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3