Concurrent activation and surface modification (CAM) process to produce surface-modified palm kernel shell-derived activated carbon (PKSdAC)

Author:

Lai Jia Yen,Chew Jiuan Jing,Ngu Lock HeiORCID

Abstract

AbstractActivated carbon production via chemical activation followed by surface functionalization with metal groups aims to achieve surface functionalization for CO2, aromatic/metallic organic compounds, and dye adsorption. The prepared activated carbon possesses a porous structure containing metal functional groups with adsorptive properties. This work proposed integrating two synthesis steps to simplify the process and reduce resources and impact. The preparation of palm kernel shell (PKS) derived AC (PKSdAC) through a concurrent activation and surface modification (CAM) process combines sulphuric acid (H2SO4) activation (5–10% mass loading) with barium chloride (BaCl2) modification (10 wt.%) at an activation temperature of 400–700 °C. The barium (Ba) is produced through the reduction process. Incorporating Ba into PKSdAC is vital to initiate chemical CO2 and other related component adsorption. The optimization study identified that 7.5% H2SO4, 10 wt.% BaCl2, and 700 °C was optimal in obtaining a high 1.50 wt.% Ba impregnated in PKSdAC. CAM-PKSdAC synthesized at optimal conditions exhibited a sponge-like cubic meso-microporous carbon structure containing BaSO4 crystals with a surface area of 420 and 423 m2 g−1 for its micropore and mesopore structure. A total pore volume of 0.19 cm3 g−1 and an average pore diameter of 1.78 nm were achieved. Conventional surface modified-activated PKSdAC prepared at optimal conditions has a cubic porous structure and a crack surface containing little BaSO4 crystals with a higher surface area of 565 m2 g−1 and total pore volume of 0.18 cm3 g−1 and an average pore diameter of 1.27 nm.

Funder

Swinburne University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3