Mycotoxin concentrations in rice are affected by chalkiness, grain shape, processing type, and grain origin

Author:

Tang Erasmus N.ORCID,Ndindeng Sali A.ORCID,Onaga GeoffreyORCID,Ortega-Beltran AlejandroORCID,Falade Titilayo D. O.ORCID,Djouaka RousseauORCID,Frei MichaelORCID

Abstract

Abstract Mycotoxins such as aflatoxins (AFs), fumonisins (FBs), zearalenone (ZEN), and deoxynivalenol (DON) pose a risk to public health due to their carcinogenic potency (AFs and FBs) and anti-nutritional effects. The hazards associated with mycotoxins are accentuated where food management practices, control, and regulatory systems from farm to plate are sub-optimal. Information on the frequency of these mycotoxins in rice commercialized in markets in sub-Sahara Africa (SSA) is limited. The current study examined AF concentrations in 527 rice samples collected from 54 markets in five SSA countries. Grain quality characteristics, processing methods, and origin of samples were contrasted with toxin levels. In total, 72% of the samples had detectable AFs levels (range = 3.0 to 89.8 µg/kg). Forty-seven percent (47%) of the samples had AFs above 4 µg/kg, the European Union maximum level (ML), and were evaluated for cooccurrence with FBs, ZEN, and DON. Total AFs and ZEN cooccurred in 40% of the samples, and 30% of the positive ZEN samples had concentrations above the ML of 75 µg/kg. Total AFs did not co-occur with FBs and DON. Multivariate analysis revealed that length-to-width ratio (p < 0.0001), mixed variety for width (p = 0.04), and chalkiness (p = 0.009) significantly influenced aflatoxin concentrations. Slender grains had higher AFs concentrations than bold and medium grains (p < 0.0001). Possible strategies to mitigate mycotoxin contamination in rice include improving grain quality traits and practicing proper drying and hermetic storage before and after milling. These findings provide valuable insights for both domestic and international actors in establishing and strengthening regulations and management systems to mitigate rice mycotoxin contamination.

Funder

European Union

CGIAR Plant Health Initiative

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3