Spatial structures of different particles in helicon plasma

Author:

Zhang Zun,Zhang Jikun,Sun Yuzhe

Abstract

AbstractThe spatial density structures of different particles (high-energy electron excited ionic and low-energy electron excited neutral particles) in both discharge and plume plasmas of a helicon source were characterized by an optical emission spectroscope (OES) and a Langmuir probe. Filters of 480 nm band pass and 600 nm high pass were used to distinguish the ionic and the excited neutral particles, respectively. The ion energy distributions at the outlet of the discharge tube with different magnetic field were obtained by a four-grid retarding field energy analyzer (RFEA). Results show that as RF input power increased, the helicon discharge modes change from a capacitive (E mode) to an inductive (H mode) to a wave coupling or a helicon discharge (W mode). After reaching the W mode, neutral particles are basically saturated, but ions will experience another growth as the power increases. Moreover, the reversed applied magnetic field can change the axial distribution of ion density (ionization region). The IEDF test results show that the maximum (most probable) ion energy increases with increasing input power. Meanwhile, the reversed magnetic field (+ 50 A) can increase the maximum ion energy by about 15 eV, which is believed to be the ionization/acceleration zone is close to the ion energy test point. Therefore, the directed ion energy is more correlated with the ion density distribution excited by high-energy electrons.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3