Genomic Access to the Diversity of Fishes

Author:

Nolte Arne W.

Abstract

AbstractThe number of fishes exceeds that of all other vertebrates both in terms of species numbers and in their morphological and phylogenetic diversity. They are an ecologically and economically important group and play an essential role as a resource for humans. This makes the genomic exploration of fishes an important area of research, both from an applied and a basic research perspective. Fish genomes can vary greatly in complexity, which is partially due to differences in size and content of repetitive DNA, a history of genome duplication events and because fishes may be polyploid, all of which complicate the assembly and analysis of genome sequences. However, the advent of modern sequencing techniques now facilitates access to genomic data that permit genome-wide exploration of genetic information even for previously unexplored species. The development of genomic resources for fishes is spearheaded by model organisms that have been subject to genetic analysis and genome sequencing projects for a long time. These offer a great potential for the exploration of new species through the transfer of genomic information in comparative analyses. A growing number of genome sequencing projects and the increasing availability of tools to assemble and access genomic information now move boundaries between model and nonmodel species and promises progress in many interesting but unexplored species that remain to be studied.

Publisher

Springer US

Reference73 articles.

1. Helfman G, Collette BB, Facey DE, Bowen BW (2009) The diversity of fishes: biology, evolution, and ecology, 2nd edn. Wiley-Blackwell, Hoboken. 736 pages, ISBN: 978-1-405-12494-2

2. Froese R, Pauly D (2018) FishBase (version Jun 2017). In: Roskov Y, Abucay L, Orrell T, Nicolson D, Bailly N, Kirk PM, Bourgoin T, DeWalt RE, Decock W, De Wever A, van Nieukerken E, Zarucchi J, Penev L (eds) Species 2000 & ITIS catalogue of life. Species 2000, Naturalis, Leiden. ISSN 2405-8858. , 30th January 2018. Digital resource at www.catalogueoflife.org/col.

3. Betancur R, Broughton RE, Wiley EO et al (2013) The tree of life and a new classification of bony fishes. PLOS Curr Tree Life. [last modified: 2013 Apr 23]

4. Valenzano DR, Benayoun BA, Singh PP et al (2015) The African turquoise killifish genome provides insights into evolution and genetic architecture of lifespan. Cell 163(6):1539–1554

5. Nielsen J, Hedeholm RB, Heinemeier J, Bushnell PG, Christiansen JS, Olsen J, Ramsey CB, Brill RW, Simon M, Steffensen KF, Steffensen JF (2016) Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science 353(6300):702–704

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3