Global selection appraisal study for heat pump system of electric vehicle based on energetic, economic, and environmental analysis

Author:

Li Kexin,Shi Lingfeng,Zhang Yonghao,Yao Yu,Tian Hua,Shu Gequn

Abstract

AbstractThe development of electric vehicles (EVs) exhibits rapid and remarkable progress nowadays, serving as a crucial route to accomplish the target of mitigating greenhouse gas emissions. As an integral part of the thermal management system oriented toward electric vehicles, the heat pump air conditioning system for electric vehicles is the result of a comprehensive choice that trades off the cooling and heating performance, environmental performance and economic cost. Particularly, different regions around the world suffer varying cooling and heating challenges due to the complicated climatic characteristics. Thus the most suitable refrigerant and system cycle structure may differ. This paper focuses on evaluating both the refrigerants and cycle structures to screen the most suitable choice. According to the climate conditions of different cities, the annual energy consumption, life cycle climate performance, and economic cost of the basic system (Base), two-stage compression system (TSC,IC), and vapor injection (VI) system with CO2, R134a, and R1234yf refrigerants respectively, are quantitatively analyzed and evaluated. Subsequently, through comparative analysis, a comprehensive selection map for heat pump systems in electric vehicles worldwide is developed and the most suitable heat pump air conditioning system for each cites is determined. The results can provide a selection reference and decision-making for the air conditioning system of electric vehicles from regional considerations. It was found that the CO2 HPACVI was recommended for cold regions to meet both environmental and economic requirements. In warm region, the R1234yf HPACBase system was recommended to be used. For regions transitioning from cold to warm climates, the R1234yf HPACVI system was suggested. In hot region, the R1234yf AC system was recommended.

Funder

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3