Statistical methods for discrimination of STR genotypes using high resolution melt curve data

Author:

Cloudy Darianne C.ORCID,Boone Edward L.ORCID,Kuehnert KristiORCID,Smith ChastynORCID,Cox Jordan O.ORCID,Seashols-Williams Sarah J.ORCID,Green Tracey DawsonORCID

Abstract

AbstractDespite the improvements in forensic DNA quantification methods that allow for the early detection of low template/challenged DNA samples, complicating stochastic effects are not revealed until the final stage of the DNA analysis workflow. An assay that would provide genotyping information at the earlier stage of quantification would allow examiners to make critical adjustments prior to STR amplification allowing for potentially exclusionary information to be immediately reported. Specifically, qPCR instruments often have dissociation curve and/or high-resolution melt curve (HRM) capabilities; this, coupled with statistical prediction analysis, could provide additional information regarding STR genotypes present. Thus, this study aimed to evaluate Qiagen’s principal component analysis (PCA)-based ScreenClust® HRM® software and a linear discriminant analysis (LDA)-based technique for their abilities to accurately predict genotypes and similar groups of genotypes from HRM data. Melt curves from single source samples were generated from STR D5S818 and D18S51 amplicons using a Rotor-Gene® Q qPCR instrument and EvaGreen® intercalating dye. When used to predict D5S818 genotypes for unknown samples, LDA analysis outperformed the PCA-based method whether predictions were for individual genotypes (58.92% accuracy) or for geno-groups (81.00% accuracy). However, when a locus with increased heterogeneity was tested (D18S51), PCA-based prediction accuracy rates improved to rates similar to those obtained using LDA (45.10% and 63.46%, respectively). This study provides foundational data documenting the performance of prediction modeling for STR genotyping based on qPCR-HRM data. In order to expand the forensic applicability of this HRM assay, the method could be tested with a more commonly utilized qPCR platform.

Funder

National Institute of Justice

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3