Recent trend in condition monitoring for equipment fault diagnosis
Author:
Publisher
Springer Science and Business Media LLC
Subject
Strategy and Management,Safety, Risk, Reliability and Quality
Link
http://link.springer.com/content/pdf/10.1007/s13198-013-0151-z.pdf
Reference177 articles.
1. Abbasiona S et al (2007) Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine. J Mech Syst Signal Process 21(7):2933–2945
2. Ahmadi H, Salami P (2010) Using of power spectral density for condition monitoring of fan. Modern Appl Sci 4(6):54
3. Ali M et al. (2006) Advances in applied artificial intelligence. Lecture notes in artificial intelligence, vol 4031, Springer, Berlin, pp 1149–1158
4. Bellini A et al. (2000) ENEL’S experience with on-line diagnosis of large induction motors cage failures. 35th IAS annual meeting and world conference on industrial applications of electrical energy—Rome
5. Al Kazzaz SAS, Singh G (2003) Experimental investigations on induction machine condition monitoring and fault diagnosis using digital signal processing techniques. Electr Power Syst Res 65:197–221
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Predictive alarm models for improving radio access network robustness;Expert Systems with Applications;2025-01
2. Review on deep learning classifiers for faults diagnosis of rotating industrial machinery;Service Oriented Computing and Applications;2024-07-29
3. PMSM Inter-Turn Short Circuit Fault Diagnosis using EKF Observer and FFT for Sensorless Input-Output Linearization Control;2023 International Conference on Electrical Engineering and Advanced Technology (ICEEAT);2023-11-05
4. Adaptive remaining useful life prediction framework with stochastic failure threshold for experimental bearings with different lifetimes under contaminated condition;International Journal of System Assurance Engineering and Management;2023-06-25
5. Model based diagnostic tool for detection of gear tooth crack in a wind turbine gearbox under constant load;International Journal of System Assurance Engineering and Management;2022-01-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3