On the origin of alkali feldspar megacrysts in granitoids. Part 2: evidence for nucleation and growth under magmatic conditions from crystal size distributions of the Cathedral Peak Granodiorite, California, USA

Author:

Seitz Susanne,Gualda Guilherme A. R.ORCID,Harmon Lydia J.

Abstract

AbstractThe mechanisms whereby alkali feldspar megacrysts form have been debated for several decades; yet, we do not understand well the processes that lead to their formation. We take advantage of glacially polished outcrop surfaces from the Cathedral Peak Granodiorite in the Tuolumne Intrusive Complex, CA to quantitatively characterize alkali feldspar textures, to provide better insight into their origin. On the glacially polished surfaces, we traced alkali feldspar crystals > 10 mm in the field. From the same localities, we also collected large slabs and stained them to reveal feldspar textures for crystals < 20 mm in size. We scaned the resulting field tracings and rock slabs to quantify CSDs using image processing techniques with the software ImageJ. The CSDs from glacially polished outcrop surfaces and complementary polished and stained rock slabs reveal two stages of crystallization. Crystals > 20 mm show log-linear CSDs with shallow slopes, suggesting magmatic nucleation and growth on timescales of thousands of years. Crystals < 20 mm define a second stage of crystallization, with much steeper slopes, suggesting a period of enhanced nucleation leading to formation of a groundmass during the final stages of solidification on timescales of decades to centuries. We do not find any evidence for CSDs affected by textural coarsening, or any effects of subsolidus processes. Our data suggest that these megacrysts form in large, slowly cooling magma, where low nucleation rates dominate. These crystals are not special in their magmatic formation—only in their size. A change in solidification conditions led to the formation of a groundmass, which warrants further study to better understand this crystallization stage in a plutonic environment.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3