Urbanization of a Subtropical Island (Okinawa, Japan) Alters Physicochemical Characteristics and Disrupts Microbial Community Dynamics in Nearshore Ecosystems

Author:

Mars Brisbin MargaretORCID,Dudley Kenneth L.,Yonashiro Yoshitaka,Mitarai Satoshi,Ares Angela

Abstract

AbstractSubtropical and tropical islands are undergoing rapid urbanization as the human population expands globally. Urbanization disrupts coastal ecosystems through several pathways—including the replacement of natural habitats with concrete structures that increase runoff pollution—but it remains difficult to isolate and characterize specific impacts of urbanization on marine ecosystems. The historical gradient in urbanization on the subtropical island of Okinawa, Japan, sets up a natural laboratory to study urbanization effects on nearshore ecosystems. Physicochemical parameters and bacterial community composition were assessed every 2 weeks for 1 year at two nearshore sites adjacent to watersheds with > 70% urban land use and two nearshore sites adjacent to watersheds with > 70% rural land use. Urbanization increased freshwater input and nutrient loading—indicated by decreased salinity and elevated nitrate + nitrite, ammonium, and phosphate at urban sites—despite the urban sites being more open to flushing due to land reclamation projects filling in the coral lagoon. Urbanization significantly altered microbial community composition by increasing diversity through the addition of fecal indicator and pathogenic bacteria—eight orders of bacteria were only detected in urban samples, whereas only Verrucomicrobiales was unique to rural samples. The change in microbial community composition at urban sites persisted throughout the seasonal cycle, suggesting a regime change or sustained disturbance. The altered physicochemical conditions and microbial communities at urban sites could degrade nearby coral reefs and their ecosystem services, highlighting the importance of coastal land management in marine conservation efforts.

Funder

Japan Society for the Promotion of Science

Simons Foundation

Okinawa Institute of Science and Technology Graduate University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3