GRIMS: global and regional ionosphere monitoring system

Author:

Ozdemir Behlul Numan,Alcay Salih,Ogutcu Sermet,Pekgor Ahmet,Seemala Gopi Krishna,Oztan Gurkan

Abstract

AbstractThe ionosphere shows regular changes such as daily, 27 days, seasonal, semi-annual, annual, and 11 years. These changes can be modeled and their effects largely determined. However, in addition to regular changes, irregular changes occur in the ionosphere due to space weather conditions, natural disasters, and human-induced irregularities. GNSS is one of the instruments along with many others that can give a piece of information on the ionospheric state. Various indices/parameters are used to determine the effect of space weather conditions. The well-known ones are solar activity indices, geomagnetic storm indices, magnetic field components, proton density, and proton flux parameters. It is important to take all of these indices into consideration when investigating the source of the anomaly. Considering only some of them may lead to incorrect inferences about the source of possible anomalies. To carry out comprehensive research in this field, it is necessary to analyze a very large data set. This indicates the requirement for an automatic system. With the Global and Regional Ionosphere Monitoring System (GRIMS) designed within the scope of this study, the ionosphere can be monitored globally and regionally. The GRIMS is online at https://www.online-grims.com/. By using Global ionospheric maps and GNSS receiver data, global, regional, and station-specific anomalies can be detected regularly through methods such as HDI (Highest Density Interval) and ARIMA (Autoregressive Integrated Moving Average). GRIMS gathers space weather-related parameters from ionospheric data centers to help users interpret the situation, and it allows users to download the results and request data for specific days. The details of the experimental results and output products of the system designed during the geomagnetic active days of March 17, 18, 2015 are given in this paper. Moreover, geomagnetic active days that occurred between 2000 and 2023 are given in the GRIMS.

Funder

Necmettin Erbakan University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3