Skip to main content

Advertisement

Log in

Mechanism of chromosomal mosaicism in preimplantation embryos and its effect on embryo development

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Aneuploidy is one of the main causes of miscarriage and in vitro fertilization failure. Mitotic abnormalities in preimplantation embryos are the main cause of mosaicism, which may be influenced by several endogenous factors such as relaxation of cell cycle control mechanisms, defects in chromosome cohesion, centrosome aberrations and abnormal spindle assembly, and DNA replication stress. In addition, incomplete trisomy rescue is a rare cause of mosaicism. However, there may be a self-correcting mechanism in mosaic embryos, which allows some mosaicisms to potentially develop into normal embryos. At present, it is difficult to accurately diagnose mosaicism using preimplantation genetic testing for aneuploidy. Therefore, in clinical practice, embryos diagnosed as mosaic should be considered comprehensively based on the specific situation of the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No new data were generated or analyzed in support of this research.

References

  1. Blyth U, Craciunas L, Hudson G, Choudhary M. Maternal germline factors associated with aneuploid pregnancy loss: a systematic review. Hum Reprod Update. 2021;27(5):866–84.

    Article  CAS  PubMed  Google Scholar 

  2. Goddijn M, Leschot NJ. Genetic aspects of miscarriage. Baillieres Best Pract Res Clin Obstet Gynaecol. 2000;14(5):855–65.

    Article  CAS  PubMed  Google Scholar 

  3. Schaeffer AJ, Chung J, Heretis K, Wong A, Ledbetter DH, Lese MC. Comparative genomic hybridization-array analysis enhances the detection of aneuploidies and submicroscopic imbalances in spontaneous miscarriages. Am J Hum Genet. 2004;74(6):1168–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chambers GM, Dyer S, Zegers-Hochschild F, de Mouzon J, Ishihara O, Banker M, et al. International Committee for Monitoring Assisted Reproductive Technologies world report: assisted reproductive technology, 2014†. Hum Reprod Oxf Engl. 2021;36(11):2921–34.

    Article  Google Scholar 

  5. Popovic M, Borot L, Lorenzon AR, Lopes AL, Sakkas D, Lledó B, et al. Implicit bias in diagnosing mosaicism amongst preimplantation genetic testing providers: results from a multicenter study of 36 395 blastocysts. Hum Reprod Oxf Engl. 2024;39(1):258–74.

    Article  Google Scholar 

  6. Franasiak JM, Forman EJ, Hong KH, Werner MD, Upham KM, Treff NR, et al. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 2014;101(3):656–663.e1.

    Article  PubMed  Google Scholar 

  7. McCoy RC, Demko ZP, Ryan A, Banjevic M, Hill M, Sigurjonsson S, et al. Evidence of selection against complex mitotic-origin aneuploidy during preimplantation development. PLoS Genet. 2015;11(10):e1005601.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Popovic M, Dhaenens L, Boel A, Menten B, Heindryckx B. Chromosomal mosaicism in human blastocysts: the ultimate diagnostic dilemma. Hum Reprod Update. 2020;26(3):313–34.

    Article  CAS  PubMed  Google Scholar 

  9. Gleicher N, Patrizio P, Brivanlou A. Preimplantation genetic testing for aneuploidy – a castle built on sand. Trends Mol Med. 2021;27(8):731–42.

    Article  CAS  PubMed  Google Scholar 

  10. Regin M, Spits C, Sermon K. On the origins and fate of chromosomal abnormalities in human preimplantation embryos: an unsolved riddle. Mol Hum Reprod. 2022;28(4):gaac011.

    Article  PubMed  Google Scholar 

  11. Taylor TH, Gitlin SA, Patrick JL, Crain JL, Wilson JM, Griffin DK. The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum Reprod Update. 2014;20(4):571–81.

    Article  CAS  PubMed  Google Scholar 

  12. McVey SL, Cosby JK, Nannas NJ. Aurora B Tension sensing mechanisms in the kinetochore ensure accurate chromosome segregation. Int J Mol Sci. 2021;22(16):8818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carmena M, Wheelock M, Funabiki H, Earnshaw WC. The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol. 2012;13(12):789–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schneider I, Ellenberg J. Mysteries in embryonic development: how can errors arise so frequently at the beginning of mammalian life? PLoS Biol. 2019;17(3):e3000173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kops GJPL, Snel B, Tromer EC. Evolutionary dynamics of the spindle assembly checkpoint in eukaryotes. Curr Biol. 2020;30(10):R589–602.

    Article  CAS  PubMed  Google Scholar 

  16. Ovejero S, Bueno A, Sacristán MP. Working on genomic stability: from the S-phase to mitosis. Genes. 2020;11(2):225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Duro J, Nilsson J. SAC during early cell divisions: sacrificing fidelity over timely division, regulated differently across organisms: chromosome alignment and segregation are left unsupervised from the onset of development until checkpoint activity is acquired, varying from species to species. BioEssays. 2021;43(3):2000174.

    Article  CAS  Google Scholar 

  18. Vera-Rodriguez M, Chavez SL, Rubio C, Pera RAR, Simon C. Prediction model for aneuploidy in early human embryo development revealed by single-cell analysis. Nat Commun. 2015;6:7601.

    Article  ADS  PubMed  Google Scholar 

  19. Yanez LZ, Han J, Behr BB, Pera RAR, Camarillo DB. Human oocyte developmental potential is predicted by mechanical properties within hours after fertilization. Nat Commun. 2016;7:10809.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brooks KE, Daughtry BL, Davis B, Yan MY, Fei SS, Shepherd S, et al. Molecular contribution to embryonic aneuploidy and karyotypic complexity in initial cleavage divisions of mammalian development. Development. 2022;149(7):dev198341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang Y, Ha S, Li Z, Li J, Xiao W. CHK1-CENP B/MAD2 is associated with mild oxidative damage-induced sex chromosome aneuploidy of male mouse embryos during in vitro fertilization. Free Radic Biol Med. 2019;137:181–93.

    Article  CAS  PubMed  Google Scholar 

  22. Li J, Ha S, Li Z, Huang Y, Lin E, Xiao W. Aurora B prevents aneuploidy via MAD2 during the first mitotic cleavage in oxidatively damaged embryos. Cell Prolif. 2019;52(5):e12657.

    Article  PubMed  PubMed Central  Google Scholar 

  23. McCoy RC. Mosaicism in preimplantation human embryos: when chromosomal abnormalities are the norm. Trends Genet TIG. 2017;33(7):448–63.

    Article  CAS  PubMed  Google Scholar 

  24. Daughtry BL, Chavez SL. Chromosomal instability in mammalian pre-implantation embryos: potential causes, detection methods, and clinical consequences. Cell Tissue Res. 2016;363(1):201–25.

    Article  PubMed  Google Scholar 

  25. Charalambous C, Webster A, Schuh M. Aneuploidy in mammalian oocytes and the impact of maternal ageing. Nat Rev Mol Cell Biol. 2023;24(1):27–44.

  26. Vázquez-Diez C, Paim LMG, FitzHarris G. Cell-size-independent spindle checkpoint failure underlies chromosome segregation error in mouse embryos. Curr Biol. 2019;29(5):865–873.e3.

    Article  PubMed  Google Scholar 

  27. Jacobs K, Van de Velde H, De Paepe C, Sermon K, Spits C. Mitotic spindle disruption in human preimplantation embryos activates the spindle assembly checkpoint but not apoptosis until day 5 of development. MHR Basic Sci Reprod Med. 2017;23(5):321–9.

    Article  CAS  Google Scholar 

  28. Avo Santos M, van de Werken C, de Vries M, Jahr H, Vromans MJM, Laven JSE, et al. A role for Aurora C in the chromosomal passenger complex during human preimplantation embryo development. Hum Reprod. 2011;26(7):1868–81.

    Article  PubMed  Google Scholar 

  29. Li W, Wang P, Zhang B, Zhang J, Ming J, Xie W, et al. Differential regulation of H3S10 phosphorylation, mitosis progression and cell fate by Aurora kinase B and C in mouse preimplantation embryos. Protein Cell. 2017;8(9):662–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oldenkamp R, Rowland BD. A walk through the SMC cycle: from catching DNAs to shaping the genome. Mol Cell. 2022;82(9):1616–30.

    Article  CAS  PubMed  Google Scholar 

  31. Peters JM, Tedeschi A, Schmitz J. The cohesin complex and its roles in chromosome biology. Genes Dev. 2008;22(22):3089–114.

    Article  CAS  PubMed  Google Scholar 

  32. Nasmyth K. Segregating Sister genomes: the molecular biology of chromosome separation. Science. 2002;297(5581):559–65.

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Uhlmann F. SMC complexes: from DNA to chromosomes. Nat Rev Mol Cell Biol. 2016;17(7):399–412.

    Article  CAS  PubMed  Google Scholar 

  34. Choi EH, Yoon S, Koh YE, Hong TK, Do JT, Lee BK, et al. Meiosis-specific cohesin complexes display essential and distinct roles in mitotic embryonic stem cell chromosomes. Genome Biol. 2022;23(1):70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yueh WT, Singh VP, Gerton JL. Maternal Smc3 protects the integrity of the zygotic genome through DNA replication and mitosis. Dev Camb Engl. 2021;148(24):dev199800.

    CAS  Google Scholar 

  36. De Koninck M, Lapi E, Badía-Careaga C, Cossío I, Giménez-Llorente D, Rodríguez-Corsino M, et al. Essential roles of cohesin STAG2 in mouse embryonic development and adult tissue homeostasis. Cell Rep. 2020;32(6):108014.

    Article  PubMed  Google Scholar 

  37. Remeseiro S, Cuadrado A, Carretero M, Martínez P, Drosopoulos WC, Cañamero M, et al. Cohesin-SA1 deficiency drives aneuploidy and tumourigenesis in mice due to impaired replication of telomeres: impaired telomere replication drives aneuploidy in SA1-deficient mice. EMBO J. 2012;31(9):2076–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Destouni A, Zamani Esteki M, Catteeuw M, Tšuiko O, Dimitriadou E, Smits K, et al. Zygotes segregate entire parental genomes in distinct blastomere lineages causing cleavage-stage chimerism and mixoploidy. Genome Res. 2016;26(5):567–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. De Coster T, Masset H, Tšuiko O, Catteeuw M, Zhao Y, Dierckxsens N, et al. Parental genomes segregate into distinct blastomeres during multipolar zygotic divisions leading to mixoploid and chimeric blastocysts. Genome Biol. 2022;23:201.

    Article  PubMed  PubMed Central  Google Scholar 

  40. McCoy RC, Newnham LJ, Ottolini CS, Hoffmann ER, Chatzimeletiou K, Cornejo OE, et al. Tripolar chromosome segregation drives the association between maternal genotype at variants spanning PLK4 and aneuploidy in human preimplantation embryos. Hum Mol Genet. 2018;27(14):2573–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Prigent C, Uzbekov R. Duplication and segregation of centrosomes during cell division. Cells. 2022;11(15):2445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hoffmann I. Role of Polo-like kinases Plk1 and Plk4 in the initiation of centriole duplication—impact on cancer. Cells. 2022;11(5):786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McCoy RC, Demko Z, Ryan A, Banjevic M, Hill M, Sigurjonsson S, et al. Common variants spanning PLK4 are associated with mitotic-origin aneuploidy in human embryos. Science. 2015;348(6231):235–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cavazza T, Takeda Y, Politi AZ, Aushev M, Aldag P, Baker C, et al. Parental genome unification is highly error-prone in mammalian embryos. Cell. 2021;184(11):2860–2877.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lu X, Gao Z, Qin D, Li L. A maternal functional module in the mammalian oocyte-to-embryo transition. Trends Mol Med. 2017;23(11):1014–23.

    Article  PubMed  Google Scholar 

  46. Bebbere D, Albertini DF, Coticchio G, Borini A, Ledda S. The subcortical maternal complex: emerging roles and novel perspectives. Mol Hum Reprod. 2021;27(7):gaab043.

    Article  PubMed  Google Scholar 

  47. Zheng P, Dean J. Role of Filia, a maternal effect gene, in maintaining euploidy during cleavage-stage mouse embryogenesis. Proc Natl Acad Sci. 2009;106(18):7473–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu XJ, Yi Z, Gao Z, Qin D, Zhai Y, Chen X, et al. The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics. Nat Commun. 2014;5(1):4887.

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Zheng W, Hu H, Dai J, Zhang S, Gu Y, Dai C, et al. Expanding the genetic and phenotypic spectrum of the subcortical maternal complex genes in recurrent preimplantation embryonic arrest. Clin Genet. 2021;99(2):286–91.

    Article  CAS  PubMed  Google Scholar 

  50. Reichmann J, Nijmeijer B, Hossain MJ, Eguren M, Schneider I, Politi AZ, et al. Dual-spindle formation in zygotes keeps parental genomes apart in early mammalian embryos. Science. 2018;361(6398):189–93.

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Schneider I, de Ruijter-Villani M, Hossain MJ, Stout TAE, Ellenberg J. Dual spindles assemble in bovine zygotes despite the presence of paternal centrosomes. J Cell Biol. 2021;220(11):e202010106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu X, Li L, Zhang C, Meng L. Observation of two separate bipolar spindles in the human zygote. J Assist Reprod Genet. 2019;36(4):601–2.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kermi C, Aze A, Maiorano D. Preserving genome integrity during the early embryonic DNA replication cycles. Genes. 2019;10(5):398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ahuja AK, Jodkowska K, Teloni F, Bizard AH, Zellweger R, Herrador R, et al. A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nat Commun. 2016;7:10660.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Munisha M, Schimenti JC. Genome maintenance during embryogenesis. DNA Repair. 2021;106:103195.

    Article  CAS  PubMed  Google Scholar 

  56. Tšuiko O, Jatsenko T, Parameswaran Grace LK, Kurg A, Vermeesch JR, Lanner F, et al. A speculative outlook on embryonic aneuploidy: can molecular pathways be involved? Dev Biol. 2019;447(1):3–13.

    Article  PubMed  Google Scholar 

  57. Adiga SK, Toyoshima M, Shiraishi K, Shimura T, Takeda J, Taga M, et al. p21 provides stage specific DNA damage control to preimplantation embryos. Oncogene. 2007;26(42):6141–9.

    Article  CAS  PubMed  Google Scholar 

  58. Fear JM, Hansen PJ. Developmental changes in expression of genes involved in regulation of apoptosis in the bovine preimplantation embryo1. Biol Reprod. 2011;84(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  59. Palmerola KL, Amrane S, De Los AA, Xu S, Wang N, de Pinho J, et al. Replication stress impairs chromosome segregation and preimplantation development in human embryos. Cell. 2022;185(16):2988–3007.e20.

    Article  CAS  PubMed  Google Scholar 

  60. Kort DH, Chia G, Treff NR, Tanaka AJ, Xing T, Vensand LB, et al. Human embryos commonly form abnormal nuclei during development: a mechanism of DNA damage, embryonic aneuploidy, and developmental arrest. Hum Reprod Oxf Engl. 2016;31(2):312–23.

  61. Chavez SL, Loewke KE, Han J, Moussavi F, Colls P, Munne S, et al. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat Commun. 2012;3(1):1251.

    Article  ADS  PubMed  Google Scholar 

  62. Carroll J, Marangos P. The DNA damage response in mammalian oocytes. Front Genet. 2013;4:117.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wang X, Liu D, He D, Suo S, Xia X, He X, et al. Transcriptome analyses of rhesus monkey preimplantation embryos reveal a reduced capacity for DNA double-strand break repair in primate oocytes and early embryos. Genome Res. 2017;27(4):567–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kurtas NE, Xumerle L, Leonardelli L, Delledonne M, Brusco A, Chrzanowska K, et al. Small supernumerary marker chromosomes: a legacy of trisomy rescue? Hum Mutat. 2019;40(2):193–200.

    Article  CAS  PubMed  Google Scholar 

  65. Matsubara K, Yanagida K, Nagai T, Kagami M, Fukami M. De novo small supernumerary marker chromosomes arising from partial trisomy rescue. Front Genet. 2020;11:132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Del Gaudio D, Shinawi M, Astbury C, Tayeh MK, Deak KL, Raca G. Diagnostic testing for uniparental disomy: a points to consider statement from the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2020;22(7):1133–41.

    Article  PubMed  Google Scholar 

  67. Eggermann T, Soellner L, Buiting K, Kotzot D. Mosaicism and uniparental disomy in prenatal diagnosis. Trends Mol Med. 2015;21(2):77–87.

    Article  PubMed  Google Scholar 

  68. Liehr T. Uniparental disomy is a chromosomic disorder in the first place. Mol Cytogenet. 2022;15:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schlade-Bartusiak K, Strong E, Zhu O, Mackie J, Salema D, Volodarsky M, et al. Mosaic embryo transfer—first report of a live born with nonmosaic partial aneuploidy and uniparental disomy 15. FS Rep. 2022;3(3):192–7.

    Google Scholar 

  70. Trussler JL, Pickering SJ, Mackie OC. Investigation of chromosomal imbalance in human embryos using comparative genomic hybridization. Reprod BioMed Online. 2004;8(6):701–11.

    Article  PubMed  Google Scholar 

  71. Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C, et al. Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009;15(5):577–83.

    Article  CAS  PubMed  Google Scholar 

  72. Wells D, Delhanty JD. Comprehensive chromosomal analysis of human preimplantation embryos using whole genome amplification and single cell comparative genomic hybridization. Mol Hum Reprod. 2000;6(11):1055–62.

    Article  CAS  PubMed  Google Scholar 

  73. Voullaire L, Slater H, Williamson R, Wilton L. Chromosome analysis of blastomeres from human embryos by using comparative genomic hybridization. Hum Genet. 2000;106(2):210–7.

    Article  CAS  PubMed  Google Scholar 

  74. Johnson DS, Gemelos G, Baner J, Ryan A, Cinnioglu C, Banjevic M, et al. Preclinical validation of a microarray method for full molecular karyotyping of blastomeres in a 24-h protocol. Hum Reprod Oxf Engl. 2010;25(4):1066–75.

    Article  CAS  Google Scholar 

  75. Chow JFC, Yeung WSB, Lau EYL, Lee VCY, Ng EHY, Ho PC. Array comparative genomic hybridization analyses of all blastomeres of a cohort of embryos from young IVF patients revealed significant contribution of mitotic errors to embryo mosaicism at the cleavage stage. Reprod Biol Endocrinol RBE. 2014;12:105.

    Article  Google Scholar 

  76. Mertzanidou A, Wilton L, Cheng J, Spits C, Vanneste E, Moreau Y, et al. Microarray analysis reveals abnormal chromosomal complements in over 70% of 14 normally developing human embryos. Hum Reprod Oxf Engl. 2013;28(1):256–64.

    Article  CAS  Google Scholar 

  77. Mertzanidou A, Spits C, Nguyen HT, Van de Velde H, Sermon K. Evolution of aneuploidy up to day 4 of human preimplantation development. Hum Reprod Oxf Engl. 2013;28(6):1716–24.

    Article  CAS  Google Scholar 

  78. Currie CE, Ford E, Whyte LB, Taylor DM, Mihalas BP, Erent M, et al. The first mitotic division of human embryos is highly error prone. Nat Commun 2022; 13 [Internet], [cited 2022 Nov 25]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9643329/

  79. Bolton H, Graham SJL, Van der Aa N, Kumar P, Theunis K, Fernandez Gallardo E, et al. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat Commun. 2016;7:11165.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mashiko D, Ikeda Z, Yao T, Tokoro M, Fukunaga N, Asada Y, et al. Chromosome segregation error during early cleavage in mouse pre-implantation embryo does not necessarily cause developmental failure after blastocyst stage. Sci Rep. 2020;10:854.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Singla S, Iwamoto-Stohl LK, Zhu M, Zernicka-Goetz M. Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism. Nat Commun. 2020;11:2958.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Starostik MR, Sosina OA, McCoy RC. Single-cell analysis of human embryos reveals diverse patterns of aneuploidy and mosaicism. Genome Res. 2020;30(6):814–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Victor AR, Tyndall JC, Brake AJ, Lepkowsky LT, Murphy AE, Griffin DK, et al. One hundred mosaic embryos transferred prospectively in a single clinic: exploring when and why they result in healthy pregnancies. Fertil Steril. 2019;111(2):280–93.

    Article  PubMed  Google Scholar 

  84. Martin A, Mercader A, Dominguez F, Quiñonero A, Perez M, Gonzalez-Martin R, et al. Mosaic results after preimplantation genetic testing for aneuploidy may be accompanied by changes in global gene expression. Front Mol Biosci. 2023;10:1180689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang M, Rito T, Metzger J, Naftaly J, Soman R, Hu J, et al. Depletion of aneuploid cells in human embryos and gastruloids. Nat Cell Biol. 2021;23(4):314–21.

    Article  CAS  PubMed  Google Scholar 

  86. Daughtry BL, Rosenkrantz JL, Lazar NH, Fei SS, Redmayne N, Torkenczy KA, et al. Single-cell sequencing of primate preimplantation embryos reveals chromosome elimination via cellular fragmentation and blastomere exclusion. Genome Res. 2019;29(3):367–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lagalla C, Tarozzi N, Sciajno R, Wells D, Di Santo M, Nadalini M, et al. Embryos with morphokinetic abnormalities may develop into euploid blastocysts. Reprod BioMed Online. 2017;34(2):137–46.

    Article  CAS  PubMed  Google Scholar 

  88. Lagalla C, Coticchio G, Sciajno R, Tarozzi N, Zacà C, Borini A. Alternative patterns of partial embryo compaction: prevalence, morphokinetic history and possible implications. Reprod BioMed Online. 2020;40(3):347–54.

    Article  CAS  PubMed  Google Scholar 

  89. Coticchio G, Ezoe K, Lagalla C, Shimazaki K, Ohata K, Ninomiya M, et al. Perturbations of morphogenesis at the compaction stage affect blastocyst implantation and live birth rates. Hum Reprod. 2021;36(4):918–28.

    Article  PubMed  Google Scholar 

  90. Zhan Q, Ye Z, Clarke R, Rosenwaks Z, Zaninovic N. Direct unequal cleavages: embryo developmental competence, genetic constitution and clinical outcome. PLoS One. 2016;11(12):e0166398.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Orvieto R, Shimon C, Rienstein S, Jonish-Grossman A, Shani H, Aizer A. Do human embryos have the ability of self-correction? Reprod Biol Endocrinol RBE. 2020;18:98.

    Article  CAS  Google Scholar 

  92. Hur C, Nanavaty V, Yao M, Desai N. The presence of partial compaction patterns is associated with lower rates of blastocyst formation, sub-optimal morphokinetic parameters and poorer morphologic grade. Reprod Biol Endocrinol RBE. 2023;21:12.

    Article  CAS  Google Scholar 

  93. James RobertaM, West JohnD. A chimaeric animal model for confined placental mosaicism. Hum Genet. 1994; 93(5). [Internet] [Cited 2022 Nov 30] Available from: https://doi.org/10.1007/BF00202833

  94. Taylor TH, Stankewicz T, Katz SL, Patrick JL, Johnson L, Griffin DK. Preliminary assessment of aneuploidy rates between the polar, mid and mural trophectoderm. Zygote. 2020;28(2):93–6.

    Article  PubMed  Google Scholar 

  95. Griffin DK, Brezina PR, Tobler K, Zhao Y, Silvestri G, Mccoy RC, et al. The human embryonic genome is karyotypically complex, with chromosomally abnormal cells preferentially located away from the developing fetus. Hum Reprod Oxf Engl. 2022;38(1):180–8.

    Article  Google Scholar 

  96. Ren Y, Yan Z, Yang M, Keller L, Zhu X, Lian Y, et al. Regional and developmental characteristics of human embryo mosaicism revealed by single cell sequencing. PLoS Genet. 2022;18(8):e1010310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Capalbo A, Rienzi L. Mosaicism between trophectoderm and inner cell mass. Fertil Steril. 2017;107(5):1098–106.

    Article  PubMed  Google Scholar 

  98. Chuang TH, Hsieh JY, Lee MJ, Lai HH, Hsieh CL, Wang HL, et al. Concordance between different trophectoderm biopsy sites and the inner cell mass of chromosomal composition measured with a next-generation sequencing platform. MHR Basic Sci Reprod Med. 2018;24(12):593–601.

    Article  CAS  Google Scholar 

  99. Coorens THH, Oliver TRW, Sanghvi R, Sovio U, Cook E, Vento-Tormo R, et al. Inherent mosaicism and extensive mutation of human placentas. Nature. 2021;592(7852):80–5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Verlinsky Y, Cieslak J, Ivakhnenko V, Evsikov S, Wolf G, White M, et al. Preimplantation diagnosis of common aneuploidies by the first- and second-polar body FISH analysis. J Assist Reprod Genet. 1998;15(5):285–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rubio C, Bellver J, Rodrigo L, Castillón G, Guillén A, Vidal C, et al. In vitro fertilization with preimplantation genetic diagnosis for aneuploidies in advanced maternal age: a randomized, controlled study. Fertil Steril. 2017;107(5):1122–9.

    Article  PubMed  Google Scholar 

  102. Tiegs AW, Tao X, Zhan Y, Whitehead C, Kim J, Hanson B, et al. A multicenter, prospective, blinded, nonselection study evaluating the predictive value of an aneuploid diagnosis using a targeted next-generation sequencing–based preimplantation genetic testing for aneuploidy assay and impact of biopsy. Fertil Steril. 2021;115(3):627–37.

    Article  CAS  PubMed  Google Scholar 

  103. Capalbo A, Ubaldi FM, Rienzi L, Scott R, Treff N. Detecting mosaicism in trophectoderm biopsies: current challenges and future possibilities. Hum Reprod Oxf Engl. 2017;32(3):492–8.

  104. Munné S, Wells D. Detection of mosaicism at blastocyst stage with the use of high-resolution next-generation sequencing. Fertil Steril. 2017;107(5):1085–91.

    Article  PubMed  Google Scholar 

  105. Popovic M, Dheedene A, Christodoulou C, Taelman J, Dhaenens L, Van Nieuwerburgh F, et al. Chromosomal mosaicism in human blastocysts: the ultimate challenge of preimplantation genetic testing? Hum Reprod. 2018;33(7):1342–54.

    Article  CAS  PubMed  Google Scholar 

  106. Rana B, Lambrese K, Mendola R, Xu J, Garrisi J, Miller K, et al. Identifying parental and cell-division origins of aneuploidy in the human blastocyst. Am J Hum Genet. 2023;110(4):565–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chavli E, van den Born M, Eleveld C, Boter M, van Marion R, Hoefsloot L, et al. Chromosomal mosaicism in human blastocysts: a cytogenetic comparison of trophectoderm and inner cell mass after next-generation sequencing. Reprod BioMed Online. 2022;45(5):867–77.

    Article  CAS  PubMed  Google Scholar 

  108. Wu L, Jin L, Chen W, Liu JM, Hu J, Yu Q, et al. The true incidence of chromosomal mosaicism after preimplantation genetic testing is much lower than that indicated by trophectoderm biopsy. Hum Reprod Oxf Engl. 2021;36(6):1691–701.

    Article  CAS  Google Scholar 

  109. Xiong S, Liu W, Wang J, Liu J, Gao Y, Wu L, et al. Trophectoderm biopsy protocols may impact the rate of mosaic blastocysts in cycles with pre-implantation genetic testing for aneuploidy. J Assist Reprod Genet. 2021;38(5):1153–62.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Domingo-Muelas A, Skory RM, Moverley AA, Ardestani G, Pomp O, Rubio C, et al. Human embryo live imaging reveals nuclear DNA shedding during blastocyst expansion and biopsy. Cell. 2023;186(15):3166–3181.e18.

    Article  CAS  PubMed  Google Scholar 

  111. Marin D, Xu J, Treff NR. Preimplantation genetic testing for aneuploidy: a review of published blastocyst reanalysis concordance data. Prenat Diagn. 2021;41(5):545–53.

    Article  PubMed  Google Scholar 

  112. Capalbo A, Poli M, Rienzi L, Girardi L, Patassini C, Fabiani M, et al. Mosaic human preimplantation embryos and their developmental potential in a prospective, non-selection clinical trial. Am J Hum Genet. 2021;108(12):2238–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Handyside AH, McCollin A, Summers MC, Ottolini CS. Copy number analysis of meiotic and postzygotic mitotic aneuploidies in trophectoderm cells biopsied at the blastocyst stage and arrested embryos. Prenat Diagn. 2021;41(5):525–35.

    Article  CAS  PubMed  Google Scholar 

  114. Treff NR, Marin D. The “mosaic” embryo: misconceptions and misinterpretations in preimplantation genetic testing for aneuploidy. Fertil Steril. 2021;116(5):1205–11.

    Article  PubMed  Google Scholar 

  115. De Rycke M, Capalbo A, Coonen E, Coticchio G, Fiorentino F, Goossens V, et al. ESHRE survey results and good practice recommendations on managing chromosomal mosaicism†. Hum Reprod Open. 2022;2022(4):hoac044.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Greco E, Minasi MG, Fiorentino F. Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts. N Engl J Med. 2015;373(21):2089–90.

    Article  PubMed  Google Scholar 

  117. Viotti M, Victor AR, Barnes FL, Zouves CG, Besser AG, Grifo JA, et al. Using outcome data from one thousand mosaic embryo transfers to formulate an embryo ranking system for clinical use. Fertil Steril. 2021;115(5):1212–24.

    Article  CAS  PubMed  Google Scholar 

  118. Munné S, Spinella F, Grifo J, Zhang J, Beltran MP, Fragouli E, et al. Clinical outcomes after the transfer of blastocysts characterized as mosaic by high resolution Next Generation Sequencing- further insights. Eur J Med Genet. 2020;63(2):103741.

    Article  PubMed  Google Scholar 

  119. Munné S, Blazek J, Large M, Martinez-Ortiz PA, Nisson H, Liu E, et al. Detailed investigation into the cytogenetic constitution and pregnancy outcome of replacing mosaic blastocysts detected with the use of high-resolution next-generation sequencing. Fertil Steril. 2017;108(1):62–71.e8.

    Article  PubMed  Google Scholar 

  120. Fragouli E, Alfarawati S, Spath K, Babariya D, Tarozzi N, Borini A, et al. Analysis of implantation and ongoing pregnancy rates following the transfer of mosaic diploid–aneuploid blastocysts. Hum Genet. 2017;136(7):805–19.

    Article  CAS  PubMed  Google Scholar 

  121. Viotti M, Greco E, Grifo JA, Madjunkov M, Librach C, Cetinkaya M, et al. Chromosomal, gestational, and neonatal outcomes of embryos classified as a mosaic by preimplantation genetic testing for aneuploidy. Fertil Steril. 2023;120(5):957–66.

    Article  CAS  PubMed  Google Scholar 

  122. Spinella F, Fiorentino F, Biricik A, Bono S, Ruberti A, Cotroneo E, et al. Extent of chromosomal mosaicism influences the clinical outcome of in vitro fertilization treatments. Fertil Steril. 2018;109(1):77–83.

    Article  PubMed  Google Scholar 

  123. Leigh D, Cram DS, Rechitsky S, Handyside A, Wells D, Munne S, et al. PGDIS position statement on the transfer of mosaic embryos 2021. Reprod BioMed Online. 2022;45(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  124. Tšuiko O, Catteeuw M, Zamani Esteki M, Destouni A, Bogado Pascottini O, Besenfelder U, et al. Genome stability of bovine in vivo-conceived cleavage-stage embryos is higher compared to in vitro-produced embryos. Hum Reprod. 2017;32(11):2348–57.

    Article  PubMed  Google Scholar 

  125. Lledó B, Morales R, Ortiz JA, Blanca H, Ten J, Llácer J, et al. Implantation potential of mosaic embryos. Syst Biol Reprod Med. 2017;63(3):206–8.

    Article  PubMed  Google Scholar 

  126. Wang L, Wang X, Liu Y, Ou X, Li M, Chen L, et al. IVF embryo choices and pregnancy outcomes. Prenat Diagn. 2021;41(13):1709–17.

    Article  CAS  PubMed  Google Scholar 

  127. Zamani Esteki M, Viltrop T, Tšuiko O, Tiirats A, Koel M, Nõukas M, et al. In vitro fertilization does not increase the incidence of de novo copy number alterations in fetal and placental lineages. Nat Med. 2019;25(11):1699–705.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

X.Z. drafted the manuscript and drew the figures. P.-S.Z. critically revised the article.

Corresponding author

Correspondence to Peng-Sheng Zheng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zheng, PS. Mechanism of chromosomal mosaicism in preimplantation embryos and its effect on embryo development. J Assist Reprod Genet (2024). https://doi.org/10.1007/s10815-024-03048-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10815-024-03048-2

Keywords

Navigation