Downregulated INHBB in endometrial tissue of recurrent implantation failure patients impeded decidualization through the ADCY1/cAMP signalling pathway

Author:

Zhang Hui,Wang Zhilong,Zhou Quan,Cao Zhiwen,Jiang Yue,Xu Manlin,Liu Jingyu,Zhou Jidong,Yan GuijunORCID,Sun Haixiang

Abstract

Abstract Purpose This study aims to identify the mechanism of Inhibin Subunit Beta B (INHBB), a member of the transforming growth factor-β (TGF-β) family involved in the regulation of human endometrial stromal cells (HESCs) decidualization in recurrent implantation failure (RIF). Methods RNA-seq was conducted to identify the differentially expressed genes in the endometria from control and RIF patients. RT-qPCR, WB, and immunohistochemistry were performed to analyse the expression levels of INHBB in endometrium and decidualised HESCs. RT-qPCR and immunofluorescence were used to detect changes in the decidual marker genes and cytoskeleton after knockdown INHBB. Then, RNA-seq was used to dig out the mechanism of INHBB regulating decidualization. The cAMP analogue (forskolin) and si-INHBB were used to investigate the involvement of INHBB in the cAMP signalling pathway. The correlation of INHBB and ADCY expression was analysed by Pearson’s correlation analysis. Results Our results showed significantly reduced expression of INHBB in endometrial stromal cells of women with RIF. In addition, INHBB was increased in the endometrium of the secretory phase and significantly induced in in-vitro decidualization of HESCs. Notably, with RNA-seq and siRNA-mediated knockdown approaches, we demonstrated that the INHBB-ADCY1-mediated cAMP signalling pathway regulates the reduction of decidualization. We found a positive association between the expression of INHBB and ADCY1 in endometria with RIF (R2 = 0.3785, P = 0.0005). Conclusions The decline of INHBB in HESCs suppressed ADCY1-induced cAMP production and cAMP-mediated signalling, which attenuated decidualization in RIF patients, indicating that INHBB is an essential component in the decidualization process.

Funder

National Key R&D Program of National Natural Science Foundation of China

Key Project of national natural science foundation of China

Clinical Medical Science and Technology Special

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Obstetrics and Gynecology,Genetics,Reproductive Medicine,General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3