The role of the intrinsic pathway of apoptosis in human ejaculated sperm damage under a state of scrotal heat stress

Author:

Budzinska MartaORCID,Kamieniczna MarzenaORCID,Wojnar Lukasz,Gill KamilORCID,Piasecka MalgorzataORCID,Kups Michal,Fraczek MonikaORCID

Abstract

Abstract Purpose The study aimed to determine the associations among standard sperm characteristics and oxidative/apoptotic markers in ejaculated sperm of men exposed to prolonged scrotal hyperthermia of either environmental or clinical origin. Methods The original study design included four research groups: professional drivers (n = 54), infertile men with varicocele (n = 78), infertile men not exposed to prolonged genital heat stress (n = 37), and fertile individuals serving as the control group (n = 29). Standard semen analysis was performed according to the 5th WHO laboratory manual. The following oxidative and apoptotic parameters of sperm were investigated: mitochondrial superoxide anion generation (MitoSOX Red dye), phosphatidylserine externalization (Annexin V binding assay), mitochondrial membrane potential (JC-1 dye), DNA fragmentation (TUNEL/PI assay), and membrane fluidity (merocyanine 540 dye). Results All the studied groups presented a strong deterioration in routine sperm parameters and a strongly apoptotic phenotype in sperm, characterized by both decreased mitochondrial membrane potential and enhanced DNA fragmentation, regardless of the thermal insult. Significant induction of mitochondrial superoxide anion generation was noted only in the groups exposed to genital heat stress. A positive correlation between the production of superoxide anion in the mitochondrial chain and the level of DNA fragmentation in drivers was also noted. Conclusion Long-term exposure to scrotal hyperthermia in real-life situations is sufficient to reduce sperm quality in humans. The thermal stress directly induces the oxidative stress cascade in ejaculated sperm, affecting the plasma membrane fluidity, mitochondrial homeostasis, and sperm DNA integrity.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Obstetrics and Gynecology,Genetics,Reproductive Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3