A Novel Method to Improve the Physical Property and Biocompatibility of Decellularized Heart Valve Scaffold with Sericin and Polydopamine

Author:

Bai Peng,Kong Gangcheng,Qiao Weihua,Song Yu,Wang Yixuan,Shi Jiawei,Zhang Nan,Liu Chungeng,Chu Chong,Xiong Tixiusi,Zhou Ying,Lu Cuifen,Wang Lin,Dong NianguoORCID

Abstract

AbstractCardiac valve replacement is an effective method to treat valvular heart disease. Artificial valves used routinely in clinic still have defects. In our study, we explored a novel method to modify the performance of Decellularized Heart Valve (DHV) scaffold. The decellularized porcine aortic valve was prepared using sequential hydrophile and lipophile solubilization method. The sericin was extracted from silk fibroin-deficient silkworm cocoon by lithium bromide method. First, DHV was immersed in sericin solution to produce the sericin–DHV composite scaffold. Then, we modified the DHV by making a Polydopamine (PDA) coating on the DHV first and then binding the sericin. The physical properties and biological compatibility of our composite scaffold were assessed in vitro and in vivo. Sericin were successfully prepared, combined to DHV and improved its biocompatibility. PDA coating further promoted the combination of sericin on DHV and improved the physical properties of scaffolds. The decay rate of our modified valve scaffold was decreased in vivo and it showed good compatibility with blood. In conclusion, our modification improved the physical properties and biocompatibility of the valve scaffold. The combination of PDA and sericin promoted the recellularization of decellularized valves, showing great potential to be a novel artificial valve.

Funder

National Key Research and Development Program of China Stem Cell and Translational Research

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Bioengineering,Biophysics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biomedical Application of Decellularized Scaffolds;ACS Applied Bio Materials;2023-11-30

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3