1. Aicher, C., Ma, Y.A., Foti, N.J., Fox, E.B.: Stochastic gradient mcmc for state space models. SIAM J. Math. Data Sci. 1(3), 555–587 (2019). https://doi.org/10.1137/18M1214780
2. Ambrogioni, L., Lin, K., Fertig, E., Vikram, S., Hinne, M., Moore, D., van Gerven, M.: Automatic structured variational inference. In: Banerjee, A., Fukumizu, K. (eds.) Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, PMLR, Proceedings of Machine Learning Research, vol 130, pp. 676–684, https://proceedings.mlr.press/v130/ambrogioni21a.html (2021)
3. Audi, G., Wapstra, A., Thibault, C.: The AME2003 atomic mass evaluation: (ii). Tables, graphs and references. Nucl. Phys. A 729, 337–676 (2003)
4. Bauer, M., van der Wilk, M., Rasmussen, CE.: Understanding probabilistic sparse gaussian process approximations. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, NeurIPS’16, pp. 1533–1541, http://dl.acm.org/citation.cfm?id=3157096.3157268 (2016)
5. Bayarri, M.J., Berger, J.O., Paulo, R., Sacks, J., Cafeo, J.A., Cavendish, J., Lin, C.H., Tu, J.: A framework for validation of computer models. Technometrics 49, 138–154 (2007). https://doi.org/10.1198/004017007000000092