Toroidal PCA via density ridges

Author:

García-Portugués Eduardo,Prieto-Tirado Arturo

Abstract

AbstractPrincipal Component Analysis (PCA) is a well-known linear dimension-reduction technique designed for Euclidean data. In a wide spectrum of applied fields, however, it is common to observe multivariate circular data (also known as toroidal data), rendering spurious the use of PCA on it due to the periodicity of its support. This paper introduces Toroidal Ridge PCA (TR-PCA), a novel construction of PCA for bivariate circular data that leverages the concept of density ridges as a flexible first principal component analog. Two reference bivariate circular distributions, the bivariate sine von Mises and the bivariate wrapped Cauchy, are employed as the parametric distributional basis of TR-PCA. Efficient algorithms are presented to compute density ridges for these two distribution models. A complete PCA methodology adapted to toroidal data (including scores, variance decomposition, and resolution of edge cases) is introduced and implemented in the companion R package . The usefulness of TR-PCA is showcased with a novel case study involving the analysis of ocean currents on the coast of Santa Barbara.

Funder

Agencia Estatal de Investigación

Comunidad de Madrid

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ridgetorus: PCA on the Torus via Density Ridges;CRAN: Contributed Packages;2022-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3