Abstract
Abstract
Background
Exposure of human lung epithelial cells to the oxidant pollutant ozone (O3) alters cell Cl− currents inducing an outward rectifier effect. Among the various Cl− channels, ClC-2 and ORCC seemed to be involved in this response.
Objectives
To identify the channel related to O3 induced current changes.
Results
Down regulating the expression of ORCC and ClC-2 genes and analyzing the membrane current show that the enhancement of the current disappeared when ORCC was silenced. The contribution of ORCC and ClC-2 channels in control and O3 treated cells was obtained by a mathematical approach.
Conclusion
We suggest that O3 activates ORCC channels and slightly inhibited ClC-2 channels in the negative voltage range. These findings open the possibility of identifying the biomolecular changes induced by O3 allowing a possible pharmacological intervention towards chloride current due to oxidative stress.
Funder
Università degli Studi di Ferrara
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,General Pharmacology, Toxicology and Pharmaceutics,Toxicology,Pathology and Forensic Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献