Author:
Sachs David,Jakob Raphael,Restivo Gaetana,Hafner Jürg,Lindenblatt Nicole,Ehret Alexander E.,Mazza Edoardo
Abstract
AbstractThe present study investigates the multiphasic nature of the mechanical behavior of human dermis. Motivated by experimental observations and by consideration of its composition, a quadriphasic model of the dermis is proposed, distinguishing solid matrix components, interstitial fluid and charged constituents moving within the fluid, i.e., anions and cations. Compression and tensile experiments with and without change of osmolarity of the bath are performed to characterize the chemo-mechanical coupling in the dermis. Model parameters are determined through inverse analysis. The computations predict a dominant role of the permeability in the determination of the temporal evolution of the mechanical response of the tissue. In line with the previous studies on other tissues, the analysis shows that an ideal model based on Donnan’s equilibrium overestimates the osmotic pressure in skin for the case of very dilute solutions. The quadriphasic model is applied to predict changes in dermal cell environment and therefore alterations in what is called the “mechanome,” associated with skin stretch. The simulations indicate that skin deformation causes a variation in several local variables, including in particular the electric field associated with a deformation-induced non-homogeneous distribution of fixed charges.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Swiss Federal Institute of Technology Zurich
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献