Early adapting to trends: self-stabilizing information spread using passive communication

Author:

Korman AmosORCID,Vacus RobinORCID

Abstract

AbstractHow to efficiently and reliably spread information in a system is one of the most fundamental problems in distributed computing. Recently, inspired by biological scenarios, several works focused on identifying the minimal communication resources necessary to spread information under faulty conditions. Here we study the self-stabilizing bit-dissemination problem, introduced by Boczkowski, Korman, and Natale in [SODA 2017]. The problem considers a fully-connected network of nagents, with a binary world of opinions, one of which is called correct. At any given time, each agent holds an opinion bit as its public output. The population contains a source agent which knows which opinion is correct. This agent adopts the correct opinion and remains with it throughout the execution. We consider the basic $$\mathcal {PULL}$$ PULL model of communication, in which each agent observes relatively few randomly chosen agents in each round. The goal of the non-source agents is to quickly converge on the correct opinion, despite having an arbitrary initial configuration, i.e., in a self-stabilizing manner. Once the population converges on the correct opinion, it should remain with it forever. Motivated by biological scenarios in which animals observe and react to the behavior of others, we focus on the extremely constrained model of passive communication, which assumes that when observing another agent the only information that can be extracted is the opinion bit of that agent. We prove that this problem can be solved in a poly-logarithmic in n number of rounds with high probability, while sampling a logarithmic number of agents at each round. Previous works solved this problem faster and using fewer samples, but they did that by decoupling the messages sent by agents from their output opinion, and hence do not fit the framework of passive communication. Moreover, these works use complex recursive algorithms with refined clocks that are unlikely to be used by biological entities. In contrast, our proposed algorithm has a natural appeal as it is based on letting agents estimate the current tendency direction of the dynamics, and then adapt to the emerging trend.

Funder

University of Haifa

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3